
The Korteweg-de Vries Equation: 
History, exact Solutions, and graphical Representation

by Klaus Brauer, University of Osnabrück/Germany1

Last Revision of this paper: February 2014

Travelling waves as solutions to the Korteweg-de Vries equation (KdV) which is a non-linear
Partial Differential Equation (PDE) of third order have been of some interest already since
more than 165 years.
The author’s aim is to present an analytical exact result to the KdV equation by means of
elementary operations as well as by using Bäcklund transform. Special interest is devoted
to non-linear superposition of several waves, the so called Solitary Waves or Solitons which
is performed by Bäcklund transform too.
The derivation of the exact solutions follows the presentation of Vvedensky (1992).
It is fascinating that these exact solutions which involve a lot of calculations can be done with
the help of the Computer Algebra System Mathematica © , since 2013 Version 9.0, not only
presenting analytical expressions but in addition 3D-Plots, Density Plots, and 2D-Plots for
discrete values of time, finally animating these 2D-Plots and presenting these plots as well
as the solution formulae at an Internet page.
Another aim of the author has been to apply numerical discrete methods to non-linear PDEs.
With the help of the exact solutions gained here an excellent possibility is given to test the
quality of the numerical methods by checking the numerical results against the exact
solutions.

§ 1: Historical Background

A nice story about the history and the underlying physical properties of the Korteweg-de Vries
equation can be found at an Internet page of the Herriot-Watt University in Edinburgh
(Scotland), see Eilbeck (1998). The following text is taken from that page:
Over one hundred and fifty years ago, while conducting experiments to determine the most
efficient design for canal boats, a young Scottish engineer named John Scott Russell
(1808-1882) made a remarkable scientific discovery. Here his original text as he described it
in Russell (1845):

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair

of horses, when the boat suddenly stopped - not so the mass of water in the channel which it

had put in motion; it accumulated round the prow of the vessel in a state of violent agitation,

then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large
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solitary elevation, a rounded, smooth and well-defined heap of water, which continued its

course along the channel apparently without change of form or diminution of speed. I followed

it on horseback, and overtook it still  rolling on at a rate of some eight or nine miles an hour,

preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the windings of the

channel. Such, in the month of August 1834, was my first chance interview with that singular

and beautiful phenomenon which I have called the Wave of Translation.

This event took place on the Union Canal at Hermiston, very close to the Riccarton campus of
Heriot-Watt University, Edinburgh.
Throughout his life Russell remained convinced that his solitary wave (the ``Wave of
Translation'') was of fundamental importance, but nineteenth and early twentieth century
scientists thought otherwise. His fame has rested on other achievements. To mention some of
his many and varied activities, he developed the "wave line" system of hull construction which
revolutionized nineteenth century naval architecture, and was awarded the gold medal of the
Royal Society of Edinburgh in 1837. He began steam carriage service between Glasgow and
Paisley in 1834, and made the first experimental observation of the "Doppler shift" of sound
frequency as a train passes. He reorganized the Royal Society of Arts, founded the Institution
of Naval Architects and in 1849 was elected Fellow of the Royal Society of London.
He designed (with Brunel) the "Great Eastern" and built it; he designed the Vienna Rotunda and
helped to design Britain's first armoured warship (the "Warrior"). He developed a curriculum for
technical education in Britain, and it has recently become known that he attempted to negotiate
peace during the American Civil War. 

It was not until the mid 1960's when applied scientists began to use modern digital computers
to study nonlinear wave propagation that the soundness of Russell's early ideas began to be
appreciated. He viewed the solitary wave as a self-sufficient dynamic entity, a "thing" displaying
many properties of a particle. From the modern perspective it is used as a constructive element
to formulate the complex dynamical behaviour of wave systems throughout science: from
hydrodynamics to nonlinear optics, from plasmas to shock waves, from tornados to the Great
Red Spot of Jupiter, from the elementary particles of matter to the elementary particles of
thought and - last but not least - to the description of a tsunami.
For a more detailed and technical account of the solitary wave, see Bullough (1988).

The phenomenon described by Russell can be expressed by a non-linear Partial Differential
Equation of the third order. To remind: A partial differential equation (PDE) is a mathematical
equation which contains an unknown function of more than one variable as well as some
derivatives of that function with respect to the different independent variables. In practical
applications where the PDE describes a dynamic process one of the variables has the meaning
of the time (hence denoted by t) and the other (normally only up to 3) variables have the
meaning of the space (hence denoted by x, y and z)
We consider the simplest case in only one space variable x. So we are looking for a function
u depending on the variables x and t, i.e. u(x,t) which describes the elongation of the wave at
the place x at time t.
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(1)

(2)

Using the typical short denotations as

the problem can be formulated as:

This is the Korteweg-de Vries Equation (KdV) which is nonlinear because of the product shown
in the second summand and which is of third order because of the third derivative as highest
in the third summand. The factor 6 is just a scaling factor to make solutions easier to describe.

The aim here is to find general exact solutions to (1), i.e.: here we have neither an initial
condition nor boundary conditions. The solutions to (1) are called Solitons or Solitary waves.

The Korteweg-de Vries is a hyperbolic PDE in the general sense of the hyperbolicity definition.
From that it follows that it describes a reversible dynamical process.

The author’s interest for analytical solutions of (1) stems from the fact that in applying numerical
methods to non-linear PDEs, the KdV equation is well suited as a test object, since having an
analytical solution statements can be made on the quality of the numerical solution in
comparing the numerical result to the exact result.

The main part of the subsequent deduction of an analytical solution to (1) is taken from
Vvedensky (1992), who has shown how to find an exact solution to the KdV equation and who
has used the tool of Bäcklund transform to obtain an analytical solution and who - in addition
to that - performs non-linear superposition of two, three and more solutions corresponding to
two, three or more Solitons waves by using Bäcklund transform again.

§ 2: Exact Solution to the KdV Equation

We remember that the simplest mathematical wave is a function of the form 
 which e.g. is a solution to the simple PDE   where c denotes

the speed of the wave. For the well known wave equation   the famous
d’Alembert solution leads to two wave fronts represented by terms   and  .
Hence we start here with a trial solution

just denoting the parameter c above by β here and the function f  by z. 
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(3)

(4)

(5)

Substituting the trial solution (2) into (1) we are led to the Ordinary Differential Equation

Integration can be done  directly since (3) is a form of a total derivative. It follows  from (3):

where is the constant of integration. In order to obtain a first order equation for z a
multiplication with  is done, i.e.:

where   and   denote the first and second derivative of the function z with respect to ξ.

Integration on both sides (indefinite integral) with respect to ξ  leads to

The four constants of integration are put together into the constant  and the result of the
integrations is

The result (5) can easily be verified by differentiation with respect to ξ using the chain rule.

Now it is required that in case  we should have .
From these requirements it follows  .

Remark:

More general solutions can be found for other choices of   and . These solutions can be
represented in terms of elliptic integrals, for details see Drazin (1983).
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(7)

(8)

(9)

(10)

(11)

(6)

With  equation (5) can be written as

By separation of variables we may write

The choice of 0 for the lower integration limits does not bring any loss of generality since the
starting point can be transformed linearly.
The integration of the left hand side of (7) can be done by using a transformation

The role of s here is played by the variable ζ and we obtain

since the relation holds. Furthermore we have

The upper integration limit of the left hand integral in (7) due to (8) is transformed to

Substituting (9), (10), and (11) into (7) we get
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(12)

(14)

(13)

With (8) the transform back to ζ is done and we obtain:

Now we use (2) and we finally get

Remarks:

In order to have a real solution the quantity β must be a positive number. As it is easily seen
from (12) for β > 0 the solitary wave moves to the right. The second point is that the amplitude
is proportional to the speed which is indicated by the value of β. Thus larger amplitude solitary
waves move with a higher speed than smaller amplitude waves.
To perform superpositions later (see § 4) we consider the following: If - instead of (8) - we
select the transformation

In the same way as we obtained the solution (12) we will obtain another solution which is:

The solution (14) is an irregular solution to the KdV Equation. It has a singularity for vanishing
argument of the cosech-function, i.e. for the line in the x-t-plane with

The proof that both functions (12) and (14) are solutions to the original KdV Equation can be
easily verified with the help of Mathematica as shown in the sequel and by inserting them into
the KdV equation (here named as PDEKdV).
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(15)

(16)

(17)

§ 3: Exact Solution with Bäcklund transform

We are now going to construct a solution to (1) with the help of Bäcklund transform since this
technique is used later for non-linear superposition. We introduce a function v with the property 

 and it follows from (1):

Integration with respect to x yields

where the function on the right hand side is the integration function.
The new function   is introduced with

The solution u  to (1) will be obtained from the solution v to (16) and since  there is no
need for a distinction between  and v. So we may set f / 0 without loss of generality.
Now our purpose is to solve the PDE

A Bäcklund transform which leaves an equation invariant is called Auto-Bäcklund transform.
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(20)

(21)

(18)

(19)

This Auto-Bäcklund transform is given by the following set of equations:

The parameter β is the so called Bäcklund parameter, for details we refer to Vvedensky (1992),
chapter 9.

We now may generate a non trivial solution by applying (18) to the trivial solution (which clearly
fulfills (17)). With  the first two lines of (18) result into

The first formula in (19) may easily be integrated and be inserted into the second. Two types
of solutions fulfill (19):

It is easy to verify that both functions (20) do fulfill (19) and (17). The second function has a
singularity for vanishing argument of coth. This irregular solution here and in future is denoted
with a bar. Now it is easy by integrating with respect to x to deduce from (20) two solutions (a
regular one and an irregular one) to the KdV equation (1). These solutions are:

Again we are led to the same solution we already found with (12) and (14). The only difference
is the parameter. If we denote the parameter β in (21) by  and compare it with the parameter
β from (12) and (14) then the relation  holds. We may verify the steps with Mathematica:
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With DSolve we may obtain a solution with the following delayed function:

Typically the arbitrary function is denoted by C[1][t]. Insertion into PDE1 is done and the

attempt is made whether the Coth-function instead of the Tanh-function fulfills PDE1:

Both the functions fulfill (19), first equation. Now the second equation is solved by:

where the integration constant has been set to zero. 

With this result we define the two functions:
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Both these functions clearly fulfill the second equation of (19) and the PDE (17):

Finally the solution to the KdV equation is given by the first derivative with respect to x:



Klaus Brauer: The Korteweg - de Vries Equation 11

(25)

(26)

(22)

(23)

(24)

Though the irregular solution is not acceptable in physical sense it will be used to construct
higher order solutions by using the non-linear superposition principle.

§ 4: Nonlinear superposition

Let  be any solution to (17) and let  be a solution obtained from  by applying the
Bäcklund transform with the Bäcklund parameter β. To remind what we did: We had chosen
the trivial solution  and from that we received (20) as a solution to (17).
We now consider two solutions and obtained by applying the Bäcklund transform
to with parameters and .

From (18) we have (only the first line is used):

Let be the solution obtained from  by successive application of (18), first line - first
step with parameter  and second step with parameter . Then we have

In the same way let  be the solution by first applying  and afterwards .
Instead of (23) we then have

We now demand that

and try to solve (23) and (24) for .. 

Subtraction of the second line in (22) from the first yields:
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(27)

(28)

(29)

Subtracting (24) from (23) and using (25) leads to

By eliminating the left-hand sides in (26) and (27) we get:

And finally

We have to show now that the function Ψ from (28) indeed is a solution to (17):

The expression (28) is differentiated with respect to  x and to t and three times with respect to
x. These derivatives are inserted into (17). 

The result is:

The second derivatives with respect to x in (26) are formed resulting in:
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(32)

(30)

(31)

(33)

The formula (30) has to be inserted into the last summand in (29) thus eliminating the second
derivatives. If we do so and keep in mind that each of the functions   are
solutions to (17) then we get from (29):

Now from (26) the expression  is calculated and inserted into the last
term of (31). After some rearrangement the sum of the terms on the right-hand-side of (31) is
zero thus showing that the function Ψ is indeed a solution to (17).

The main formula for constructing further solutions is (28). If we take which clearly is a
solution to (17) and if we take the regular and the irregular solutions (20) which fulfill (17), then
these two solutions play the role of   and  in (28).
Using two regular solutions (first solution of (20) with two different values of β) would lead to an
irregular solution by using (28). This can be seen as follows from (20), first equation, with a
fixed value for the parameter β:

Since the function v is continuous there will always be one value of the argument for which the
denominator in (28) is zero, leading to a singularity in .
So we use both, the regular and the irregular solution from (20) to construct a regular solution
by using (28). The solutions from (20) are denoted by  and  analogous to what we
did here before, the bar again denotes the irregular solution. The two Bäcklund parameters are
chosen as . This ensures that the denominator in (28) does not vanish for any values
of the arguments. Thus we get a superpositioned function:
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(36)

(34)

(35)

Since the function  from (33) is a solution to (17) it has to be integrated with respect to x to
obtain a superpositioned solution to the original KdV equation.
This process of supositioning a regular and an irregular solution to (17) can be iterated. We
have to apply (28) again to 3 solutions. Instead of in (28) we now take the regular solution
from (20) with a Bäcklund parameter  β which is different from and  and name it .
The role of the function  in (28) is now played by the function  from (33) for the two
Bäcklund parameters and β and thus is named as .

This solution is regular, a corresponding irregular solution (denoted by a bar) then is gained by
combining two regular solutions as mentioned above:

The two functions of the denominators of (34) and (35) are again the solutions (20).
If we combine the two functions of (34) and (35) we want to get a regular solution for a 3-
Solitons solution. It is necessary then that it holds . Together with the
regularity condition in (34)/right we then have   as a regularity condition.
Finally according to (28) the new 3-Solitons solution is

Again (36) is a solution to (17), it has to be integrated with respect to x  to get a solution to the
original KdV equation.
Principally by superposition a regular n-solution can be constructed from a pair of irregular and
regular (n -1) -solutions.

§ 5: Mathematica code for one, two and three solitons

The solutions from (21) as well as the solutions got from (33) and (36) are coded in
Mathematica as follows:
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The first parameter of this block is a list. If it contains one element a one-Solitons solution is
calculated, if it contains two or three elements 2- or 3-Solitons solutions are calculated. It is
ensured in the code that the condition  is not violated.

Calls, results with output in so called  “Traditional Form”, and proofs are:
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In case of the  three solitons an analytical solution was obtained, but Mathematica (Version
9.0.1) is not able during a reasonable amount of time to verify that the solution truly fulfills the
KdV equation:

These analytical solutions are very helpful when applying numerical methods since a
comparison is possible, see de Frutos & Sanz-Serna (1997) and Schiesser (1994). 

A different approach in obtaining solutions to the KdV equation is shown by Varley & Seymour
(1998).
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§ 6: Discussion of the parameters

Clearly the parameters cannot be negative since due to the square roots in the solutions that
would lead to complex values.
Next we look at the situation that some parameters take the value zero. It is trivial that in the
case of a one-soliton-solution with  the result is .
In the case of the two-soliton-solution we have:

For  the solution degenerates into the solution for one soliton with the parameter .
In case of  we are lead to an irregular solution.

The situation for the three-soliton-solution is as follows:

For  the solution degenerates into the solution for two solitons with the parameters
. If in this case additionally  is chosen then again we come to a one-soliton-

solution.
If  or if  is chosen keeping the two other parameters unequal zero we are lead
to irregular solutions.

Next the cases are considered that all parameters are different from zero but two of them are
equal. We start with the two-soliton-solution.
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If both the parameters are equal then the result is the trivial solution .

In case of the three-soliton-solution we have different possibilities:

In the case of the result is the one-soliton-solution with the parameter  and in the
case of the result again is the one-soliton-solution, here with the parameter .
The case  leads to an irregular solution.

To observe really one, two or three solitons the restriction to the parameters is:
The have to be positive real numbers and in the cases of more than one parameter
they have to be different from each other.

§ 7: Plots for the one-,  two- , and the three-soliton solutions

With Mathematica it is possible to generate an array of graphics with type ?GIF? showing the
solutions for one, two and three solutions for different values of time t. The elements of this of
this array can be animated. The results of animated 2D-graphics may be seen visiting Brauer
(2014), further information is got by visiting Eilbeck (1998).

Some characteristic snapshots are the following:
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Figure 1

Figure 2 Figure 3

Figure 4
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Figure 5

Figure 8

Some 3D-Plots und Density Plots for the solutions with one, two and three solitons follow.

Figure 6

Figure 7
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Figure 9

Figure 10

Figure 11
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Figure 12

Figure 13



Klaus Brauer: The Korteweg - de Vries Equation 23

References

Brauer, K. (2014).  http://www.usf.uos.de/institut/mitarbeiter/brauer/solitons.html  

Bullough, R.K. (1988). "The Wave par excellence", the solitary, progressive great wave of equilibrium
of the fluid - an early history of the solitary wave. In Solitons (M. Lakshmanan, Ed.), Springer
Series in Nonlinear Dynamics, 150-281, New York, Berlin, Heidelberg etc.: Springer.

Drazin, P.G. (1983). Solitons. London: Cambridge University Press (London Mathematical Society,
Lecture Note Series 85, ISSN 0076-0552).

Eilbeck, C. (1998).  http://www.ma.hw.ac.uk/~chris/scott_russell.html

de Frutos, J.; Sanz-Serna, J.M. (1997). Accuracy and conservation properties in numerical integration:
the case of the Korteweg - de Vries equation. Num. Math. 75,   421 - 445.

Russell, J. S. (1845). Report on Waves. Report of the 14th meeting of the British Association for the
Advancement of Science, York, September 1844, pp 311-390, Plates XLVII-LVII). London.

Schiesser, W.E. (1994). Method of lines solution of the Korteweg - de Vries equation. Comp. & Maths.
with Appls. 28,  147 - 154.

Varley, E.; Seymour, B.R. (1998). A Simple Derivation of the N-Soliton Solutions to the Korteweg - de
Vries Equation. SIAM Journal on Appl. Math. 58, 904-911.

Vvedensky, D. (1992). Partial Differential Equations with Mathematica. Wokingham (England) etc.:
Addison-Wesley.

Wolfram, S. (2003). The Mathematica Book, Fifth Edition. Wolfram Media, Inc., ISBN 1-57955-022-3.
This book refers to version 5 of Mathematica, in Version 9 the entire documentation is
included in the software.

    


