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Abstract Social predators benefit from cooperation in the form of increased hunting
success, but may be at higher risk of disease infection due to living in groups. Here, we
use mathematical modeling to investigate the impact of disease transmission on the
population dynamics benefits provided by group hunting.We consider a predator–prey
model with foraging facilitation that can induce strong Allee effects in the predators.
We extend this model by an infectious disease spreading horizontally and vertically in
the predator population.Themodel is a systemof three nonlinear differential equations.
We analyze the equilibrium points and their stability as well as one- and two-parameter
bifurcations. Our results show that weakly cooperating predators go unconditionally
extinct for highly transmissible diseases. By contrast, if cooperation is strong enough,
the social behavior mediates conditional predator persistence. The system is bistable,
such that small predator populations are driven extinct by the disease or a lack of
prey, and large predator populations survive because of their cooperation even though
they would be doomed to extinction in the absence of group hunting. We identify
a critical cooperation level that is needed to avoid the possibility of unconditional
predator extinction. We also investigate how transmissibility and cooperation affect
the stability of predator–prey dynamics. The introduction of parasites may be fatal
for small populations of social predators that decline for other reasons. For invasive
predators that cooperate strongly, biocontrol by releasing parasites alone may not be
sufficient.
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1 Introduction

Group living is a widespread phenomenon in the animal kingdom. Carnivores form
hunting groups, birds breed in colonies, fish school together, and herbivores form
herds. Living in groups provides on the one hand many benefits due to cooperation
(e.g., increased foraging efficiency, group defence, increased access to mates, and help
from kin), but there are also numerous costs on the other hand (e.g., increased risk
of disease or parasites, increased competition for food, and attraction of predators).
While there has been considerable work on the evolution, function, and optimal group
size of animal aggregations (Rubenstein 1978; Krause and Ruxton 2002; Beauchamp
2014), the impact of group living seems underexplored in dynamic population and
community models.

In order to improve their skills in defence or hunting, many animals exhibit social
behavior and cooperatewith othermembers of their species. Cooperation is common in
carnivores (e.g., African wild dogs (Courchamp and Macdonald 2001), spiders (Ward
and Enders 1985), and chimpanzees (Watts and Mitani 2002)). Often, this behavior is
a reflection of the environment in which the animals live; for example, there are many
pack hunters in the Afrotropical region, where vast areas do not guarantee a sufficient
food supply individually (Packer and Ruttan 1988; Rubenstein and Lovette 2007).
Furthermore, harsh climatic conditions due to the Indian Ocean Dipole or the El Niño
Southern Oscillation can enforce populations to cooperate for survival (McMahon
et al. 1992).

At the same time, aggregation in groups comes with the risk of disease transmis-
sion. There is empirical evidence for a positive correlation between group size and
both the prevalence and intensity of contagious parasites (Côté and Poulin 1995).
For instance, the king penguin (Aptenodytes patagonicus) breeds in colonies of up
to 500,000 individuals. Adults and chicks in large colonies are increasingly infested
with ticks (Ixodes uriae) (Mangin et al. 2003), which reduce the incubation success
of adults. Moreover, living in dense populations can promote transmission of some
infectious diseases because of increased aggressive interactions, large social groups,
or promiscuous mating systems (Loehle 1995; Altizer et al. 2003).

The interaction between disease transmission and cooperative behavior has been
recently investigated in prey populations (Bate and Hilker 2014). As infection by a
disease reduces prey density, this tends to weaken group defense against predators.
Mathematical models show that prey infection allows predators to survive if they
would go conditionally or unconditionally extinct in the absence of prey infection
due to effective group defense. As for the stability of predator–prey dynamics, prey
infection can stabilize oscillations to fixed points on the one hand, but also induce
chaotic attractors and attractor crises on the other hand. Yet another effect of prey
infection is the facilitation of stable (as opposed to oscillatory) coexistence of two
consumers on one resource.
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Diseased Social Predators 2177

The objective of this paper is to investigate the impact of disease transmission in
social predators. We shall be interested in the interplay of cooperative host behavior
and infection dynamics, and how this interplay affects the persistence and stability of
the predator–prey system. To this end, we extend a model of group-hunting predators
(Teixeira Alves and Hilker 2017) by considering an infectious disease spreading in the
predator population. We thus obtain an eco-epidemiological model that combines the
effects of disease transmission and ecological interactions (see Venturino 2016, for a
review of this type of models).

Group hunting is a form of foraging facilitation and can induce strong Allee effects
(Berec 2010; Teixeira Alves and Hilker 2017), i.e., a positive relationship between
population density and per capita growth rate (Allee 1931; Courchamp et al. 2008).
Group hunting can have different consequences. On the one hand, it can mediate
predator survival in ecological conditions where predators would go extinct without
cooperation (Teixeira Alves and Hilker 2017). On the other hand, if pack hunting is
too strong, the predation pressure may reduce prey population size to such levels that
the predator population size decreases because of overexploitation (Teixeira Alves and
Hilker 2017). Regarding the stability of predator–prey systems, group hunting tends
to be destabilizing as it extends the parameter range of limit cycle oscillations (Berec
2010) and induces limit cycles that are not possible in the absence of cooperation
(Teixeira Alves and Hilker 2017).

For the infectious disease in the predator population, we assume frequency-
dependent disease transmission because this can drive the host population extinct for
large enough transmissibilities. Moreover, we focus exclusively on density-mediated
effects of the disease. That is, we assume the only impact of the disease is to reduce
the host population density, but we do not consider trait-mediated effects, e.g., that
the disease influences the group hunting behavior of infected predators. Nevertheless,
the impact of disease mortality is hard to predict as there are different positive and
negative feedback loops in the system. Increased disease-related mortality could be
amplified by less effective group hunting or even lead to predator extinction by itself.
By contrast, reduced predator densities could release prey from overexploitation by
large predator populations and thus have a positive effect also on predators.

2 Model Derivation

2.1 Group Hunting and Predator Infection

In the absence of disease, the predator–prey model is of the form

dN

dT
= r

(
1 − N

K

)
N − a(P)N P,

dP

dT
= −mP + εa(P)N P,

(1)

where N and P represent the densities of the prey and predator populations, respec-
tively. The prey population grows logisticallywith per capita growth rate r and carrying
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capacity K . Predators have a natural per capita death rate m. Parameter ε is the effi-
ciency with which predators convert consumed prey into their own growth. In order to
incorporate cooperative hunting amongpredators,we assume that the attack (or search)
rate per predator and prey a(P) is a function of predator density. More specifically,
we assume a linear relationship

a(P) = a0 + a1P,

where a0 ≥ 0 is the density-independent attack rate in the absence of cooperative
behavior and a1 ≥ 0 represents the strength of predator cooperation. If a1 = 0,
the attack rate is constant and model (1) corresponds to the Lotka–Volterra model
with a linear functional response and with prey self-regulation. If a1 > 0, model (1)
corresponds to the foraging facilitation model by Teixeira Alves and Hilker (2017).

Next, we account for disease infection of predators.We consider a simple SI system
and split the predator population P = S + I into subpopulations of susceptibles (S)
and infecteds (I ). Consequently, we obtain two different attack rates

aS(S, I ) = aS0 + aSSS + aSI I,

aI (S, I ) = aI0 + aI S S + aI I I,

of susceptible and infected predators, respectively. aS0 is the density-independent
attack rate of a susceptible predator, and aSS and aSI represent how the attack rate of
susceptible predators is increased by the presence of susceptible and infected predators,
respectively. Parameters aI0, aI S , and aI I have analogous meanings for the attack rate
of infected predators. In general, these parameters can be different from each other.
For example, if infected predators cannot hunt, aI0 = 0, aSI = aI I = 0, so that all
hunting activity is done by susceptibles, aS0, aSS > 0. If aI S > 0, infected predators
benefit from group hunting with susceptibles who might tolerate infecteds at a kill or
feed them by regurgitation. As another example, if infected predators participate in
group hunting but are incapacitated due to disease, they are likely to not cooperate
with their conspecifics in the same way as susceptibles do. In this case, we have:

aSI < aSS, aI I < aSI .

As a final example, predators could be more aggressive due to infection by a particular
disease such as rabies. They can thus provide more resources to the population than
before. In this case, we have:

aSI > aSS, aI I > aSI .

These extensions lead to a model with three populations (N , S, and I ), which reads

dN

dT
= r

(
1 − N

K

)
N − aS(S, I )NS − aI (S, I )N I, (2)

dS

dT
= −β

SI

P
− mS + εaS(S, I )NS + (1 − θ) εaI (S, I )N I, (3)
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dI

dT
= β

SI

P
− mI − μI + θεaI (S, I )N I. (4)

This model assumes frequency-dependent disease transmission, with transmission
coefficient β. The potential impact of density-dependent transmission is considered
in Discussion. Moreover, we assume that the disease can be transmitted vertically,
i.e., from parent to offspring, where θ ∈ [0, 1] represents the fraction of newborns
acquiring the infection from the parent. Furthermore, infected predators are subject
to an additional disease-related per capita mortality μ. There is no recovery from the
disease.

2.2 Simplifying Assumptions

Model (2)-(4) has thirteen parameters. In order to reduce the number of parameters
and thus simplify the model, we assume that

a0 = aS0 = aI0, a1 = aSS = aSI = aI S = aI I .

Biologically, this means that the disease does not influence the foraging behavior of
predators. Hence, the attack rate is the same for susceptible and infected predators:

aS(S, I ) = aI (S, I ) = a0 + a1(S + I ) = a0 + a1P.

Then, the model reads

dN

dT
= r

(
1 − N

K

)
N − (a0 + a1P) N P,

dS

dT
= −β

SI

P
− mS + ε (a0 + a1P) NS + (1 − θ) ε (a0 + a1P) N I,

dI

dT
= β

SI

P
− mI − μI + θε (a0 + a1P) N I.

We now perform a change of state variables, which allows us not only to deal with
the singularity in the frequency-dependent transmission term, but also to distinguish
disease-induced extinction cases from trivial extinction equilibria. To this end, we
replace the state variables S and I by the new state variables P and i , which are the
total predator population and its prevalence i = I/P , respectively. This yields

dN

dT
= r

(
1 − N

K

)
N − (a0 + a1P) N P,

dP

dT
= − (m + μi) P + ε (a0 + a1P) N P,

di

dT
= i (1 − i) (β − μ) − (1 − θ) ε (a0 + a1P) Ni.
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We now nondimensionalize this model to ease its analysis. Introducing the dimen-
sionless variables

n = εa0
m

N , p = a0
m

P, t = mT,

and dimensionless parameters

r ′ = r

m
, k = εa0K

m
, α = ma1

a20
, μ′ = μ

m
, β ′ = β

m
,

we obtain

dn

dt
= r

(
1 − n

k

)
n − (1 + αp) np, (5)

dp

dt
= − (1 + μi) p + (1 + αp) np, (6)

di

dt
= i (1 − i) (β − μ) − (1 + αp) (1 − θ) ni, (7)

where we have dropped the dashes of dimensionless parameters for notational conve-
nience. This is themodel wewill analyze in the following. Our attentionwill bemainly
focused on the impact of pack hunting, α, and disease transmissibility, β. Before pro-
ceeding we note that the infection will not persist in the predator population (i → 0 as
t → ∞) if the transmission coefficient is smaller than the virulence (β < μ) because
di/dt < 0 in that case.

2.3 Special Cases

Model (5)-(7) extends the Lotka–Volterra model with logistic prey growth by (i) dis-
ease spread in the predators and (ii) predator cooperation. We will briefly consider
special cases before analyzing the full model.

2.3.1 Eco-Epidemiological Model Without Hunting Cooperation

In the absence of predator cooperation (α = 0), model (5)-(7) reduces to a predator–
prey model with infected predators. It corresponds to one of the models studied by
Oliveira and Hilker (2010), who also considered density-dependent transmission but
assumed in each case no vertical transmission, i.e., θ = 0. In the case of frequency-
dependent transmission, four different types of dynamical behavior are possible:

(a) Disease-free case: The disease cannot establish itself in the predator population.
The system behaves like the classical Lotka–Volterra model with either (i) preda-
tors and prey coexisting at stable equilibrium or (ii) predators going extinct and
prey reaching carrying capacity.

(b) Stable endemic coexistence: The disease establishes itself in the predator popu-
lation, and all species (prey, predators, disease) coexist at a stable equilibrium.
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(c) Oscillatory endemic coexistence: All species coexist in sustained oscillations,
which are due to limit cycles.

(d) Disease-induced predator extinction: The disease drives the predator population
to extinction, with the prey reaching carrying capacity.

In case (c), the disease induces limit cycle oscillations that do not exist in the predator–
prey model without infection.

2.3.2 Hunting Cooperation Without Disease

If the disease does not establish itself in the predator population, i.e., i = 0, model
(5)-(7) reduces to the predator–prey model with foraging facilitation considered by
Teixeira Alves and Hilker (2017). We now briefly recap the main results because they
are helpful to understand the dynamics of the full model.

If predators cannot survive in the absence of cooperative behavior, strong enough
hunting cooperation translates into a demographic Allee effect and can mediate the
survival of the predator population. In that case, there is bistability between predator
extinction and one of the following dynamical outcomes

(a) Stable coexistence of predators and prey
(b) Oscillatory coexistence of predators and prey (limit cycle)

However, if hunting cooperation is too strong and the coexistence is oscillatory, the
predator population collapses as it overexploits the prey and dips below the Allee
threshold, i.e., the minimum viable population density due to the Allee effect. Mathe-
matically, this is related to a homoclinic bifurcation. As a consequence, the dynamics
is monostable and there is

(c) Predator extinction with prey at carrying capacity.

If predators and prey coexist in the absence of cooperative behavior, they continue
to do so in the presence of hunting cooperation. In this case, there is no bistability, but
rather

(d) Monostable coexistence of predators and prey.

Foraging facilitation tends to have a negative indirect effect on prey density. The
direct effect on predator density is positive if hunting cooperation is not too strong,
but negative if predators have grown to such a large population density that cannot be
sustained anymore by the prey.

3 Equilibria and Stability Analysis

We now consider model (5)-(7) that combines hunting cooperation and predator infec-
tion. We will first present the basic reproduction numbers of the disease and of the
predators. We will then explore the impact of hunting cooperation in an isocline anal-
ysis, where we restrict the three-dimensional dynamics onto a phase plane, assuming
that the disease prevalence reaches its asymptotic value. Finally, we will summarize
the results of a linear stability analysis.
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3.1 Basic Reproduction Numbers

Webegin with the basic reproduction number of the disease in the predator population,
which can be defined as

R0(p
◦, n◦) = β + θ(1 + αp◦)n◦

1 + μ
. (8)

For this, we assume that predators and prey are at disease-free equilibrium densities
p◦ and n◦, respectively. The basic reproduction number gives the number of sec-
ondary infections caused by a single infected predator during its infectious period
when introduced into a completely susceptible population of density p◦ and available
prey n◦. The mean lifetime of an infected predator is the reciprocal of 1 + μ, which
is the sum of the dimensionless natural and disease-related per capita death rates. The
secondary infections are due to horizontal transmission, β and vertical transmission,
θ(1 + αp◦)n◦.

Hunting cooperation increases the basic reproduction number of the disease, pro-
vided that there is vertical transmission, i.e., θ > 0. As horizontal disease transmission
is frequency dependent, it is independent of predator density. Therefore, hunting coop-
eration affects disease spread only via vertical transmission.

IfR0(p◦, n◦) < 1, the disease cannot spread in the predator population and disap-
pears. The system will settle into the disease-free subsystem with hunting cooperation
only (summarized in the previous section). IfR0(p◦, n◦) > 1, the disease can spread
and becomes endemic in the predator population.

Now,we consider the basic reproduction number of the predator population. It gives
the average number of offspring produced by a single predator during its lifetimewhen
introduced into a prey population in the absence of anyother predators. It can be defined
as

Rp(i
∗) = k

1 + μi∗
,

where the numerator is the dimensionless numerical response of a single predator
in a prey population at carrying capacity. The denominator gives the death rate of a
predator population infected at prevalence level i∗.Note that the prevalence level canbe
defined for frequency-dependent transmission because the contact rate is independent
of predator density. The prevalence considered here corresponds to the proportion of
infected predators when the total predator population tends to zero.

The predator basic reproduction number does not take into account the effect of
hunting cooperation, because it is defined on the assumption that there are no other
predators. However, the predator basic reproduction number involves the other ecolog-
ical (predation), demographic (mortality), and epidemiological (virulence) processes.
The condition Rp(i∗) > 1 therefore expresses whether the predators, in the absence
of hunting cooperation, can sustain themselves on the prey population available and
in the presence of infection. If this is the case, we can say that the predators are eco-
epidemiologically sustainable. IfRp(i∗) < 1, the predators are eco-epidemiologically
unsustainable and go extinct.
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If the predator population is disease-free,Rp(0) = k as in TeixeiraAlves andHilker
(2017). In the presence of infection, disease-related mortality reduces the predator
basic reproduction number. This is plausible because the predators need to compensate
disease-related deaths.

3.2 Phase Plane Approximation

At any nontrivial equilibrium with p∗ > 0 and n∗ > 0, the prevalence of infected
predators equals

i∗ = β − μ − (1 − θ)

β − μθ
. (9)

This follows from an isocline analysis (see “Appendix A”). The prevalence depends
only on disease-related parameters (horizontal and vertical transmission as well as
virulence) and is not affected by any ecological parameter.

Fixing the prevalence at its equilibrium level i∗ defines a section of the three-
dimensional state space of model (5)-(7). This allows us to approximate the dynamics
in the predator–prey phase plane on the assumption that predators are infected with
prevalence i∗ and persist on prey. Figure 1 shows several phase planes for different
values of critical parameter combinations.

– If Rp(i∗) > 1, there is a unique nontrivial equilibrium Enpi of infected predators
andprey, seeFig. 1b, d and “AppendixA” for details. The existenceof this nontrivial
equilibrium is independent of the strength of hunting cooperation.

– If the predators are eco-epidemiologically unsustainable, i.e., Rp(i∗) < 1, the
situation is more complicated. Hunting cooperation can induce the existence of
multiple equilibria Enpi. The nontrivial nullclines of prey and predators can inter-
sect twice, once, or not at all. Numerical simulations suggest that these different
outcomes depend on the value of the cooperation parameter α (see also Sect. 4.2):
– If α is smaller than a critical value, α < αc, there is no intersection. The
only stable equilibrium is the one where predators are extinct and prey at
carrying capacity (Fig. 1a). Hence, predator cooperation is not strong enough
to facilitate predator survival.

– If α > αc, there are two different coexistence equilibria Enpi, one stable and
one unstable (Fig. 1c). In this case, we observe a strong demographic Allee
effect: The predators either go extinct or coexist with the prey. The system
is bistable, and the outcome depends on the initial condition. If the predator
density is large enough, the hunting cooperation mediates predator survival.
By contrast, if the predator density is too small, the predator population goes
extinct (which could be caused by a lack of prey consumption or by the disease).

– For the particular parameter value α = αc, there is a unique intersection
between the two nullclines, which suggests this is a saddle–node bifurcation
point separating the two previous cases.

That is, hunting cooperation can mediate the survival of predators if they go extinct
in the absence of foraging facilitation. For this to occur, the hunting cooperation needs
to be strong enough. Numerical simulations suggest that the critical value αc(i∗)
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Fig. 1 Phase planes (p, n)with the prevalence fixed at nontrivial equilibrium level i = i∗. Top panelsweak
hunting cooperation (α = 0.2 < αc), bottom panels strong hunting cooperation (α = 1.5 > αc). Left panels
eco-epidemiologically unsustainable predators (k = 0.8 < kc(i∗)), right panels eco-epidemiologically
sustainable predators (k = 1.5 > kc(i∗)). The dashed blue lines indicate the predator nullclines and the
solid red lines the prey nullclines. They are based on the assumptions to intersect the prevalence nullplane
i = i∗ (for the nontrivial nullclines). The boundary equilibria and nullclines have been added from the
three-dimensional model. The filled circles represent stable steady states, the empty circles the unstable
steady states. The other parameter values are r = 10, μ = 0.3, θ = 0.1, β = 2 (Color figure online)

depends on the disease prevalence. In particular, αc(i∗) increases with disease preva-
lence, which seems plausible because predators have to compensate higher infection
levels by more intensive hunting cooperation. We will refer to the case α < αc(i∗)
as weak hunting cooperation and the case α > αc(i∗) as strong hunting coopera-
tion. The latter allows predators to survive in an eco-epidemiologically unsustainable
environment.

3.3 Linear Stability Analysis

Table 1 summarizes the results from the equilibrium and stability analysis, using the
threshold quantities identified in this Section. Details of the linear stability analysis
are given in “Appendix B”.

In the disease-free case, R0(p◦, n◦) < 1, the system settles either on the prey-
only equilibrium or on a coexistence state between prey and susceptible predators.
Due to the strong Allee effect mediated by hunting cooperation, there can be multiple
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Table 1 Equilibria of models (5)–(7) and their existence and stability conditions

Equilibrium Meaning Existence Stability

E0 = (0, 0, 0) Extinction of all species Always Unstable

Ei = (0, 0, 1) Extinction of all species Always Unstable

En = (k, 0, 0) Prey only Always Rp(0) < 1 andRi < 1

Eni = (k, 0, i†) Disease-induced predator
extinction

Ri > 1 Rp(i∗) < 1

Enp = (n◦, p◦, 0) Disease-free predator–prey
coexistence

n/a n/a

Enpi = (n∗, p∗, i∗) (Endemic) coexistence R0(0, 1) > 1 necessary n/a

See “Appendix B” for more details
The existence condition for Enpi is only necessary. n/a: not available

disease-free predator–prey equilibria Enp. In the presence of disease, predators survive
if Rp(i∗) > 1 or if strong hunting cooperation (α > αc(i∗)) mediates their survival
if they are eco-epidemiologically unsustainable.

Finally, we note that there can be two different prey-only equilibria. At the first
one (Eni), disease infection is strong enough to drive predators extinct. Consequently,
there is a strictly positive prevalence in the limit process as the predator density
approaches zero. If the predators would go extinct due to purely ecological reasons,
the prevalence would be zero in the limit process (En). The disease-induced extinction
equilibrium exists if the total predator population decays faster (namely at per capita
rate (1 + αp)n − 1) than the infected predators (at rate β + θ(1 + αp)n − 1 − μ).
As p → 0 and n → k, this condition can be expressed in terms of the prevalence
reproduction number (cf. Oliveira and Hilker 2010),

Ri = β + θk

μ + k
> 1.

4 Bifurcation Analysis

Wenow focus on the case that hunting cooperation canmediate predator survival in the
disease-free system. That is, predators would go extinct in the absence of pack hunting
because the prey supply does not sustain the predator population (Rp(0) < 1), but
cooperation allows predators to persist if their density is large enough (α > αc(0)).
In this case, the dynamics is bistable, see Fig. 1c. We are interested in the impact of
predator infection, in particular whether the disease could potentially undermine the
cooperation-mediated survival and drive the predators extinct, or whether predators
are able to withstand and persist.

4.1 One-Parameter Bifurcations

Figure 2 shows bifurcation diagrams with varying disease transmissibility. For small
values of disease transmissibility, the disease cannot establish itself in the predator
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Fig. 2 Bifurcation diagrams with a bistable baseline scenario, in which cooperation can mediate preda-
tor survival in the disease-free system. Left panels (α = 0.7) Sufficiently strong disease transmissibility
undermines cooperation-mediated survival and always leads to predator extinction. Right panels (α = 1.2)
Hunting cooperation is so strong that predator survival remains possible for all values of β. Top panels
show prey and bottom panels predator population densities at equilibrium, when varying β. The disease
prevalence in the predator population is not shown here. It is given explicitly in Eq. (9) for the coexis-
tence equilibrium and increases monotonically with β. Solid red lines represent stable equilibria, dashed
black lines represent unstable equilibria. Equilibria are labeled according to Table 1. Bifurcation points
are labeled as LP (limit point), TC (transcritical), and BP (branching point). Models (5)–(7), remaining
parameter values: θ = 0.1, μ = 0.3, r = 10, and k = 0.8 < kc(0) (Color figure online)

population. The system remains disease-free and approaches either the coexistence
state Enp or the prey-only state En . The disease-free equilibria are unaffected by trans-
missibility and therefore constant in Fig. 2. For larger transmissibilities, the disease
invades the predator population. Two endemic coexistence equilibria Enpi emerge
from the disease-free coexistence states Enp, one of which is stable and the other one
unstable. The predator density at the stable branch of Enpi is depressed with increasing
transmissibility, whereas prey density increases. All this holds true for both values of
hunting cooperation considered in Fig. 2.

If hunting cooperation is strong but relatively small (left-hand side panels of Fig. 2),
there is a limit point bifurcation when further increasing transmissibility. At that point,
the two nontrivial equilibria coalesce and disappear. For larger values of β, predators
go extinct due to the disease, and prey reach carrying capacity. The system has lost its
bistability as the disease has become too strong.

By contrast, if hunting cooperation is strong and also sufficiently large (right-
hand side panels of Fig. 2), there is no limit point bifurcation. Cooperation-mediated
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predator survival remains possible for all values of the transmissibility considered.
Nevertheless, the disease has a detrimental effect on predators. Not only does it reduce
the predator density at the stable coexistence equilibrium Enpi, but numerical simula-
tions (not shown here) suggest that it also tends to increase the Allee threshold, i.e.,
the minimum predator density required for persistence. Note that the Allee threshold
depends on the prey and prevalence levels because we consider a three-dimensional
system. The Allee threshold is therefore related to the boundary between the predator
survival and extinction region; in particular, the Allee threshold is not identical with
the unstable saddle point (Berec et al. 2001; Teixeira Alves and Hilker 2017, Fran-
comano et al, in press). However, hunting cooperation is sufficiently strong that the
system remains bistable and predator survival is always possible, for all values of the
disease transmissibility.

4.2 Two-Parameter Bifurcation Diagram

To have a clearer picture of the effects of both disease and pack hunting, Fig. 3
shows a two-parameter bifurcation in the (α, β) parameter plane. If β is sufficiently
small, the system remains disease-free. In this case, predators cannot survive if hunting
cooperation is weak (En). However, if hunting cooperation is strong, there is bistability
between En and predator–prey coexistence, which can be stable (Enp) or cyclic (cf.
Teixeira Alves and Hilker 2017).

Let us now consider the case where β is large enough so that the disease becomes
endemic. On the left-hand side of the limit point bifurcation curve, α is so small that
hunting cooperation is weak and predators go extinct (Eni). Crossing the limit point
bifurcation curve, a strongAllee effect renders the systembistable: The predators either
go extinct or coexist with prey. For larger values ofα, there is aHopf bifurcation, where
Enpi becomes unstable and the populations oscillate. There is still bistability, namely
between Eni and the limit cycle oscillations.

We gather two important results from Fig. 3. First, the limit point bifurcation curve
has an asymptote for increasing disease transmissibility, i.e., αc(i∗) → αc ≈ 1.01 as
β becomes large. That is, for sufficiently large hunting cooperation (α > αc), there is
always the possibility of coexistence for at least some initial conditions even if disease
transmissibility becomes extremely high. Second, the minimum value of α for Hopf
bifurcations to occur is αh . When fixing hunting cooperation at a value α > αh , there
can be two Hopf bifurcations when varying β, giving rise to a bubbling effect, see
Fig. 4.

4.3 Impact of Vertical Transmission

Finally, we investigate the impact of vertical transmission. Figure 5 shows two-
parameter bifurcation diagrams for increasing values of θ . We observe the following
effects.

First, the higher the proportion of vertical transmission, the smaller the disease-free
parameter region (orange color in Fig. 5). This makes sense as vertical transmission
increases the basic reproduction number, see Eq. (8).
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Fig. 3 Two-parameter bifurcation diagram in the parameter plane (α, β) for the case of an ecologically
unsustainable predator population (k < kc(0)). Left of the limit point curve (LP, dashed red line) the disease
always drives the predators extinct. To the right, a strong Allee effect due to hunting cooperation facilitates
predator survival. The bold green line is the asymptote αc of the limit point curve for large transmissibilities;
it indicates the value of α, above which cooperation is so strong that no infection could annihilate the strong
Allee effect. The thin black line represents the Hopf bifurcation (HB) curve. αh is the smallest value of α

to induce a limit cycle. To its right, predators and prey oscillate if they coexist (horizontal blue dots). The
bubbling effect is possible in the area shaded in light blue. The bold blue line is the asymptote of the Hopf
bifurcation curve as β → ∞, with α → 19.2. Orange color indicates the parameter region where the
disease remains absent: In region En, the prey-only state is the only attractor. In region En/Enp, there is
bistability due to cooperation-mediated predator survival for certain initial conditions. In region En/OCnp,
coexistence is oscillatory due to a limit cycle. Equilibria are labeled according to Table 1. Model (5)-(7),
remaining parameter values as in Fig. 2 (Color figure online)

Fig. 4 Bubbling effect: Increasing horizontal disease transmission first destabilizes and then stabilizes
the population dynamics of infected predators and prey. Shown is the bifurcation diagram for prey when
varying disease transmissibility. Hunting cooperation is fixed at a value that allows predator survival due
to a strong Allee effect (α = 17 > αc). The red line indicates stable equilibria, and the dashed black line
indicates unstable equilibria. The bold green line indicates the amplitudes of the limit cycles. HB marks
Hopf bifurcations. The prey-only equilibrium and other unstable equilibria are not shown. Other parameter
values are as in Fig. 3 (Color figure online)

123



Diseased Social Predators 2189

Fig. 5 Effect of vertical transmission: Two-parameter bifurcation diagrams with increasing values of
vertical transmission θ . The area with vertical blue dots indicates the parameter region with the bubbling
effect. Other curves, shadings, and parameter values are as in Fig. 3. Top panel θ = 0.2, middle panel
θ = 0.7, bottom panel θ = 0.9 (Color figure online)
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Second, with increasing values of θ the limit point bifurcation curve moves closer
to the asymptote αc (green vertical line), and the asymptote itself increases slightly.
That is, vertical transmission reduces the parameter region where hunting cooperation
induces a strong Allee effect. This makes sense as a higher disease burden due to
increased vertical transmission requires stronger pack hunting by the predators to
survive.

Third, vertical transmission has a stabilizing effect as the parameter regionwith limit
cycle oscillations shrinks when increasing θ . Moreover, fourth, the parameter region
leading to the bubbling effect shrinks as well with increasing vertical transmission.

In the limiting case of complete vertical transmission, θ = 1, the bifurcation dia-
gram shows only the two asymptotes, namely αc for the limit point bifurcation and
the bold blue line for the Hopf bifurcation. In this case, the bubbling effect disappears
completely.

5 Discussion and Conclusions

Living in groups can confer benefits to a population, but also promote adverse effects
such as increased disease risk. Our model combines both pack hunting and disease
transmission in the predator population. If disease transmissibility is high and hunting
cooperation low, the impact of the disease prevails in the sense of driving the predator
population extinct. However, if hunting cooperation is sufficiently large (α > αc), we
observe a different model behavior. In this case, the system is always bistable. That is,
independently of the strength of the disease, the group behavior guarantees predator
survival for large enough predator populations. Here, it is the pack hunting that prevails
as it prevents unconditional predator extinction due to ecological or epidemiological
reasons. In some intermediate region, the cooperation level needed to facilitate survival
increases with disease transmissibility, as pack hunting needs to compensate disease
virulence.

Cooperation-mediated survival is something that ourmodel ‘inherits’ from the pack
hunting model (Teixeira Alves and Hilker 2017). We show that it also occurs in the
presence of disease. Note that multiple endemic equilibria, which are characteristic
of the strong Allee effect, are not possible in the eco-epidemiological model without
predator cooperation (Oliveira and Hilker 2010). Disease-induced host extinction is
something that our model inherits from the eco-epidemiological model (Oliveira and
Hilker 2010). Disease-induced extinction is typical for frequency-dependent transmis-
sion (e.g., Busenberg and van den Driessche 1990; Mena-Lorca and Hethcote 1992;
Hilker 2010; Bate and Hilker 2013), which we assume here.

An interesting modification of our model would be to consider density-dependent
transmission. We would expect that disease-induced predator extinction will not
be possible anymore as disease transmission ceases when the predator population
becomes small (cf. Oliveira and Hilker 2010). Furthermore, density-dependent trans-
mission assumes that the larger the host population, the higher the disease transmission.
This is another fundamental difference to frequency-dependent transmission and could
be especially important in the presence of group behavior. On the one hand, one might
therefore expect that increasing levels of hunting cooperation promote disease trans-
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mission. On the other hand, the predator population density does not always increase
with the level of hunting cooperation. This holds for the system without (Teixeira
Alves and Hilker 2017) and with the disease. If the predation pressure due to pack
hunting becomes too large, the prey density drops rapidly due to overexploitation and
the predator density consequently decreases as well. We can see this also in Fig. 1b, d,
where an increase in hunting cooperation leads to a smaller value of the predator den-
sity at the stable coexistence equilibrium. In summary, the effect of density-dependent
transmission on the system could be mixed. This could also be affected by consider-
ing a limit to hunting cooperation as the attack rate cannot increase indefinitely with
predator density (cf. Berec 2010).

The analysis in this paper reveals four threshold quantities that help us understand
the system dynamics. First, the basic reproduction number of the disease expresses
whether or not disease invades. Second, the predator basic reproduction number
determines whether or not predators can be sustained in a given ecological and epi-
demiological setting without hunting cooperation. Third, αc(i∗) marks the critical
value of the hunting cooperation above which there is a strong Allee effect. Fourth,
the prevalence reproduction number quantifies the existence of the disease-induced
predator extinction state.

Our model considers disease spread in a host population that can be subject to a
strong Allee effect. There are related models in the literature, where the strong Allee
effect is not induced by pack hunting, but included in the demographics (Hilker et al.
2009; Thieme et al. 2009; Hilker 2009, 2010) or brought about by the coupling of
mate finding and sterilizing pathogens (Berec and Maxin 2013). The dynamic behav-
ior found in the current paper (e.g., bistability, disease-induced extinction) matches
that found for frequency-dependent transmission in Hilker (2010). In particular, the
bifurcation diagram of the infected predator density has a special form, see Fig. 6. The
remarkable feature is that the density of infected predators abruptly collapses from
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Fig. 6 Bifurcation diagram for the infected predators, I = pi (not to be confused with the disease preva-
lence in the predator population). Parameter values: α = 0.7, k = 0.8. Other parameter values are as in
Fig. 1
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a rather high value to zero. This happens at the limit point bifurcation and is related
to disease-induced extinction, as the entire predator host population disappears. This
is fundamentally different from a backward bifurcation, which also involves bistabil-
ity. However, in the backward bifurcation scenario bistability occurs in the parameter
range before disease invasion and there is no disease-induced extinction (cf.Hilker
2010).

Both pack hunting and disease transmission can each induce limit cycle oscillations
(Oliveira and Hilker 2010; Teixeira Alves and Hilker 2017). It is therefore not sur-
prising that we find limit cycles also in the combined model considered here. We also
observe that disease can be destabilizing (Oliveira and Hilker 2010) but ultimately
has a stabilizing effect when transmissibility becomes large (bubbling effect, Hilker
and Schmitz 2008; Oliveira and Hilker 2010; Bate and Hilker 2013). Increased pack
hunting induces limit cycles, just as in the model without disease (Teixeira Alves and
Hilker 2017). In the presence of predator infection, however, the parameter domain
of sustained oscillations becomes larger than in the absence of disease. This holds
especially for intermediate transmissibilities.

In our simulations, we did not observe homoclinic bifurcations in which sustained
oscillations suddenly disappear; however, homoclinic bifurcations could exist for other
parameter values that were not explored in our simulations. Homoclinic bifurcations
have been observed in the model without disease (Teixeira Alves and Hilker 2017).

Ourmodel includes not only horizontal transmission, but also vertical transmission.
We find that vertical transmission promotes disease persistence, requires more hunting
cooperation for a strong Allee effect, strengthens the stabilizing effect of disease, and
reduces the parameter regions with the bubbling effect.

What we have not considered in this paper is the Allee threshold, i.e., the critical
predator density above which predators survive due to the strong Allee effect and
below which they go extinct. This critical density is related to the separatrix between
different basins of attraction, namely the one of the prey-only state on the one hand
and the one of the coexistence state on the other hand. Francomano et al (2016, 2017,
in press) have developed an algorithm to numerically approximate the Allee threshold
and applied it to the model presented in this paper. Their simulations show that, for
large hunting cooperation, the Allee threshold takes rather small densities so that the
strong Allee effect is effectively more comparable to a weak Allee effect. This means
that the cooperation-mediated survival is even more likely as it is less conditional on
a large initial population density.

Our results suggest that strongly cooperating predators are ‘immune’ to disease-
induced host extinction. From a wildlife management perspective, maintaining a large
population size can be important to promote robustness against epidemics and invad-
ing parasites. Endangered populations, however, may be especially at risk when their
declining population size cannot provide anymore the cooperation-mediated survival
in conditions of disease-induced extinction. In the case of pest control, the introduction
of parasites is a form of biological control, e.g., when predators represent an invasive
species threatening biodiversity, and the aim is to protect the indigenous prey (Ander-
son 1982; Courchamp and Sugihara 1999; Bester et al. 2002; Oliveira and Hilker
2010). In this context, two conclusions seem important. First, biological control may
not be successful in eradicating a predator pest that is very cooperative. Second, for
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this reason it appears even more imperative to detect and control invasive species as
early as possible (Vander Zanden et al. 2010) and to complement biological control
by other measure to reduce pest population size (Numfor et al. 2017).

AppendixA: Isocline Analysis in the Endemic Predator–Prey Phase Plane

We perform an isocline analysis of the three-dimensional model (5)–(7), which will
lead us to a reduced model in the two-dimensional phase plane. Any nontrivial equi-
librium satisfies the following zero-growth conditions

prey nullcline: n = k

[
1 − 1 + αp

r
p

]
, (10)

predator nullcline: n = 1 + μi

1 + αp
, (11)

prevalence nullcline: i = 1 − (1 + αp)(1 − θ)

β − μ
n. (12)

Substituting the value of n from equation (11) into equation (12), we find the nontrivial
prevalence value at any equilibrium with p∗ > 0

i∗ = β − μ − (1 − θ)

β − μθ
,

which is exactly expression (9) shown in the main text.
We can now intersect the three-dimensional state space with the prevalence

nullplane i = i∗ and work on the (p, n) plane, where p > 0 and n > 0. This simplifies
the analysis because it allows us to find the intersection of curves (10) and (11) with
i = i∗ constant (see Fig. 1).

The parabola (10) intersects the n–axis at the point (0, k), while the hyperbola (11)
intersects the n–axis at the point (0, 1 + μi∗). That is, if the vertical intercept of the
parabola (solid red dashed curve in Fig. 1) is higher than the vertical intercept of the
hyperbola (dashed blue curve in Fig. 1), then there is a unique intersection of the
parabola and hyperbola (Fig. 1b, d). This condition can be expressed as k > 1 + μi∗
or equivalently as Rp(i∗) > 1. If Rp(i∗) < 1, there can be 0, 1, or 2 intersections
(Fig. 1a, c).

Appendix B: Existence and Stability of the Stationary States

To analyze the equilibrium point, we consider the Jacobian of system (5)–(7):

J =
⎛
⎝ r

(
1 − 2n

k

) − pα′ −p′n 0
α′ p −(1 + μi) + p′n −μp

−α′θ ′i −αθ ′ni b′(1 − 2i) − α′θ ′n

⎞
⎠ ,
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where b′ = β − μ, θ ′ = 1 − θ , α′ = 1 + αp, and p′ = 1 + 2αp. The system has the
following possible equilibria:

1. E0 = (0, 0, 0). The trivial extinction state always exists and is always unstable,
since the eigenvalues of the Jacobian evaluated at this equilibrium are

λ1 = r > 0, λ2 = −1 + k, λ3 = β − μ − (1 − θ)k.

2. En = (k, 0, 0). This represents the disease- and predator-free equilibrium with the
prey being at carrying capacity. It always exists and its eigenvalues are

λ1 = −r < 0, λ2 = −1 + k, λ3 = β − μ − (1 − θ)k.

Hence, En is stable if

k < 1, Ri = β + θk

μ + k
< 1.

3. Ei = (0, 0, 1). This is the disease-induced extinction state with both predators and
prey being absent. It always exists, but it is always unstable because its eigenvalues
are:

λ1 = r > 0, λ2 = −1 + μ, λ3 = β − μ − (1 − θ)k.

4. Eni = (k, 0, i†), where i† = 1− (1−θ)k
β−μ

. This is the state corresponding to disease-
induced predator extinction, with the prey reaching carrying capacity. It exists if

Ri = β + θk

μ + k
> 1.

The eigenvalues are

λ1 = −r, λ2 = k − (1 + μi†), λ3 = (β − μ)(1 − 2i†) − (1 − θ)k.

That is, Eni is stable if k < 1 + μi†, which translates into Rp(i∗) < 1.
5. Enp = (n◦, p◦, 0) is the disease-free coexistence state of predators and prey.

The values of n◦ and p◦ are cumbersome to obtain. If k > 1, Enp is unique. If
k < 1, there can be up to two equilibria Enp which (dis-)appear in a saddle–node
bifurcation in the disease-free plane (see Teixeira Alves and Hilker 2017). The
stability of Enp is investigated numerically and discussed in the main text.

6. Enpi = (n∗, p∗, i∗), with i∗ = [β − μ − (1 − θ)](β − μθ)−1 as shown in
Appendix A. This equilibrium is the endemic coexistence state where all three
species (prey, predators and disease) coexist. As for the disease-free coexistence
equilibrium, we cannot find the explicit values of the prey and predator values.
From i∗ > 0, we obtain that a necessary existence condition for Enpi is

R0(0, 1) = β + θ

1 + μ
> 1.
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In Sect. 3, we find that if Rp(i∗) > 1 the equilibrium exists and is unique and
stable. If Rp(i∗) < 1, there can be two, one or no equilibrium point Enpi. We
study the existence and stability of Enpi numerically in the main text and show
that there is a saddle–node bifurcation when varying α.
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