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Abstract

We develop three discrete-time predator-prey models from the Nicholson-

Bailey host-parasitoid framework, assuming a type II functional response and

logistic prey growth in form of the Beverton-Holt map. Our models show many

similarities with the continuous-time Rosenzweig-MacArthur model, not only

the same equilibria and sequence of bifurcations, but also phenomena such as

the hydra effect and paradox of enrichment. Our three models differ in the

order of events, in which the processes of density-dependent prey regulation

and predation take place. When their order is reversed, but their relative order

remains the same such that only census timing is changed, we observe quanti-

tative differences in population size, but no differences in qualitative behaviour.

When a modified order of events induces delayed density dependence, we ob-

serve increased stability of population dynamics, which is somewhat contrary

to conventional expectation. Overall, our models exhibit behaviour analogous

to the Rosenzweig-MacArthur model and highlight the importance of the order

of events in discrete-time models.
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1. Introduction

The dynamic interaction between predators and prey is an important sub-

ject in ecology and has been investigated in many mathematical models (e.g.

Kendall et al., 1999; Murdoch et al., 2003; Turchin, 2003; Barraquand et al.,

2017). Mathematical models can be formulated in continuous time and discrete5

time. Continuous-time models have been widely used to model the dynamics of

interacting species for many years (Hastings, 1997; Brauer and Castillo-Chavez,

2012), however, there are several systems with dynamics that are better cap-

tured by discrete time, for instance, species with seasonal reproduction and an-

nual life cycle species (Begon et al., 2006). In addition, in experimental studies,10

data are often collected at regularly spaced intervals of time. These examples

show that studying and developing not only continuous-time, but also discrete-

time models can contribute to better understanding different types of systems

present in nature.

Although the interest in discrete-time models has increased in the last decades,15

predator-prey interactions in discrete-time models remain far from being under-

stood. One reason for that lies in the fact that most of the available discrete-time

models in the literature are derived from continuous-time models, for example,

through exponential-discretization (Hofbauer et al., 1987; Fan and Wang, 2002)

or discretization by Euler approximation (Neubert and Kot, 1992; Wendi and20

Zhengyi, 1999; Liu and Xiao, 2007).

Hadeler and Gerstmann (1990) presented a discrete-time version of the

widely-known continuous-time model proposed by Rosenzweig and MacArthur

(1963). The authors used an Euler approximation for the derivatives and the

resulting model was called “the discrete Rosenzweig model”. Despite the fact25

that the equilibrium points were similar, their system also showed complex

behaviour, such as period-doubling and even chaos, which is not observed in

the continuous-time version. Besides that, two important phenomena reported
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in the Rosenzweig-MacArthur model were not examined in that discrete-time

model, namely (i) the hydra effect, when a higher death rate in a particular30

species increases the size of its population (Abrams, 2002; Matsuda and Abrams,

2004; Abrams, 2009; Sieber and Hilker, 2012), and (ii) the paradox of enrich-

ment, when there is a destabilization leading to the risk of stochastic extinction

in the solutions due to an increase in the prey carrying capacity (Rosenzweig,

1971).35

Moreover, unlike continuous-time models where all processes, such as birth

and death, are assumed to be continuous and simultaneous in time, in discrete-

time models the order in which the events occur has to be carefully examined.

Different order of events may lead to different quantitative and qualitative be-

haviour, even in one-dimensional models (Åström et al., 1996; Jonzén and Lund-40

berg, 1999; Hilker and Liz, 2013). Thus, it is plausible to expect significant

differences in systems with more than one equation, such as predator-prey and

host-parasitoid models (Wang and Gutierrez, 1980; May et al., 1981).

A well-known discrete-time model for a host-parasitoid system was devel-

oped by Nicholson and Bailey (1935), assuming that, in the absence of para-45

sitoids, the host population grows geometrically and the fraction of hosts not

being parasitized depends only on the parasitoid population. As a result, the

coexistence equilibrium is always unstable. In order to make the model more

realistic, modifications were proposed, including not only the effect of density

dependence (Beddington et al., 1975; Hassell and Pacala, 1990; Jang, 2006) but50

also the use of functional responses to describe the interaction between the two

species (Mills and Getz, 1996; Lane et al., 1999; Tang and Chen, 2002; Abbott

and Dwyer, 2007).

In this paper we develop a discrete-time predator-prey model based on the

Nicholson-Bailey framework and consider the Beverton and Holt (1957) model55

to represent the growth of the prey population, which is equivalent to the

continuous-time logistic growth. In order to describe the effect of predation,

we use a functional response of type II. In the derivation of the model, we take

account of the specific order of events in both populations. Our simulations show
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similar results to the Rosenzweig-MacArthur continuous-time model, including60

the same equilibria and sequence of bifurcations. Besides that, we also discuss

the occurrence of the hydra effect and paradox of enrichment in our model. As

far as we know it is the first time a discrete-time model has so many similarities

compared to a continuous-time model without showing complex behaviour such

as period doubling and chaos.65

The paper is organized as follows. In the next section we develop the discrete-

time model considering the order of events in each population. In section 3,

we present some numerical results, including stability analysis and bifurcation

diagrams. We also examine the occurrence of the hydra effect and paradox of

enrichment. In section 4, we develop another two models, which differ in the70

order of events, and then we compare the qualitative and quantitative behaviour

with the model developed in section 2. Finally, in section 5 we present the

discussion and conclusions.

2. Model description

We extend the well-known Nicholson-Bailey model by including logistic prey75

growth and a type II functional response. Besides that, we carefully study

the order in which the events take place in both populations, assuming that

predation occurs after prey population growth. After studying the equilibrium

points and their stability, numerical results are compared with the Rosenzweig-

MacArthur continuous-time model.80

2.1. The model

Let Xt and Yt be the population size of prey and predators, respectively,

in generation t. We divide the time range from t to t + 1 as illustrated in

Figure 1, where we consider different sequences of events within the generation

between t and t + 1. The general model structure is shown in Figure 1a, such85

that the reproduction and intra-specific competition event (R) takes place first

followed by predation (P ) on the prey population. In the predator population,
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the consumption event (C) and the predator mortality occur after predation.

Figure 1b and 1c describe other orders of events and will be analysed later.

t t′ t′′ t′′′ t+ 1

Yt C
d

Yt+1

(a)

Xt R P Xt+1
c

t t′ t′′ t′′′ t+ 1

Yt C
d

Yt+1

(b)

Xt P R Xt+1
c

t t′ t′′ t′′′ t+ 1

Yt C
d

Yt+1

(c)

Xt R P Xt+1
c

Figure 1: Sequence of events in the prey and predator populations from generation t to t+ 1:

(a) reproduction and intra-specific competition followed by predation (R → P ); (b) predation

followed by reproduction and intra-specific competition (P → R); (c) reproduction and intra-

specific competition followed by predation, but the last event depends on the prey population

size prior to R (R → PD). Dashed lines indicate the previous event on which a process

depends. Dotted lines represent biomass conversion. Variables explained in the main text.

The prey reproduction event R at t = t′ represents the reproduction and90

intra-specific competition of the prey population according to a function f(Xt),

the factor of per-capita growth in the prey population. At this instant, while
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the prey population changes, the predator population remains the same, so that

Xt′ = Xtf(Xt),

Yt′ = Yt.
(1)

At t = t′′ the predation event P occurs. A fraction of Xt′ , the newborns

and survivors from R, is preyed upon by Yt′ predators, such that only a fraction95

g(Xt′ , Yt′) survives. The predator population also remains the same during this

event:

Xt′′ = Xt′g(Xt′ , Yt′),

Yt′′ = Yt′ .
(2)

At t = t′′′ the consumption event C takes place. The fraction of prey that

has been preyed upon is converted into new predators with a factor c > 0, the

conversion efficiency. Here, the prey population remains the same,100

Xt′′′ = Xt′′ ,

Yt′′′ = cXt′ [1− g(Xt′ , Yt′)] .
(3)

At t = t+ 1, the prey population is the same as at the previous event, while

the predator population is composed of the predators that have survived from

natural deaths,

Xt+1 = Xt′′′ ,

Yt+1 = dYt′′′ ,
(4)

where d is the predator survival probability, d ∈ [0, 1]. The general model,

considering the order of events where R is followed by P (from now on also105

referred to as R→ P model), can be written using the equations (1)-(4) as

Xt+1 = Xtf(Xt)g(Xtf(Xt), Yt),

Yt+1 = cdXtf(Xt) [1− g(Xtf(Xt), Yt)] .
(5)

In this paper, we use the Beverton-Holt model to describe the prey per-capita

growth

f(X) =
λ

1 + (λ− 1)X/K
, (6)

where λ > 1 is the factor of intrinsic per-capita growth and K > 0 is the carrying

capacity.110
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We assume a functional response of type II to describe the fraction of prey

that escapes predation. The function g(X,Y ) is given as follows

g(X,Y ) = exp

(
−AY

1 +HX

)
, (7)

where A is the average number of encounters per prey between prey and preda-

tors leading to predation, and H is the handling time of predators per prey.

(Hassell, 2000).115

Replacing (6) and (7) into the equations in (5), our model can now be written

as

Xt+1 = Xtf(Xt) exp
(

−AYt

1+HXtf(Xt)

)
,

Yt+1 = BXtf(Xt)
[
1− exp

(
−AYt

1+HXtf(Xt)

)]
,

(8)

where B = cd > 0.

In this model, in the absence of predators, the prey population grows ac-

cording to the Beverton-Holt model, i.e., for every non-zero initial condition, the120

population approaches its carrying capacity. On the other hand, in the absence

of prey, the predator population goes extinct at the next iteration. These char-

acteristics and the choices of f(X) and g(X,Y ) make the behaviour of model (8)

similar to the continuous-time Rosenzweig-MacArthur model, as we will show

later on.125

The model equations can be simplified by introducing dimensionless vari-

ables. Choosing

Nt = HXt and Pt = AYt (9)

for the prey and predator populations, respectively, we obtain the non-dimensional

predator-prey model

Nt+1 = NtF (Nt) exp
(

−Pt

1+NtF (Nt)

)
,

Pt+1 = bNtF (Nt)
[
1− exp

(
−Pt

1+NtF (Nt)

)]
,

(10)

where k = HK and b = AB/H are the new dimensionless parameters, also130

referred to in the following sections as prey carrying capacity and predator growth

factor, respectively. The function F (Nt) is given by

F (Nt) =
λ

1 + (λ− 1)Nt/k
, (11)
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which is obtained by replacing K by k in (6).

2.2. Equilibria and stability analysis

System (10) has three possible equilibrium points: extinction, prey-only and135

coexistence equilibrium, namely

E0 = (0, 0), EN = (k, 0) and ENP = (N∗, P ∗), (12)

respectively, where N∗ is the positive solution of a transcendental equation (see

Appendix A) and

P ∗ = bN∗ (F (N∗)− 1) . (13)

If the coexistence equilibrium exists, it is unique; see the proof in Appendix

A.140

For the equilibrium points E0 and EN , linear stability analysis (see Appendix

B) shows that the extinction equilibrium is always unstable while the prey-only

equilibrium is stable if and only if the condition

b <
1 + k

k
(14)

holds. Inequality (14) gives a condition under which predators will go extinct.

For predators to survive, their growth factor needs to be larger than a critical145

value that depends on the availability of prey, given by the (scaled) prey carrying

capacity k.

For the coexistence equilibrium, since there is no closed form for N∗ we

investigate its stability numerically in the next section.

3. Results for the R → P model150

The aim of this section is to present numerical simulations for the discrete-

time predator-prey model (10) and compare some of the results with the con-

tinuous-time Rosenzweig-MacArthur model. First, we obtain the nullclines and

discuss the stability of the coexistence equilibrium and the different qualitative

behaviours as a function of the predator growth factor b. Furthermore, we155
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examine the bifurcation diagram and the occurrence of the hydra effect. Finally,

we investigate the paradox of enrichment as the prey carrying capacity k is

increased.

3.1. Nullcline investigation and bifurcation analysis

Since the coexistence equilibrium can not be expressed in an analytical form,160

we investigate its stability through numerical simulations. To this end, we first

consider the non-trivial nullcline equations for model (10) as follows:

prey nullcline : N = NF (N) exp
(

−P
1+NF (N)

)
,

predator nullcline : P = bN
[
1− exp

(
−P

1+NF (N)

)]
.

(15)

In order to examine the different qualitative behaviours as the predator

growth factor increases, we fix values of λ and k and consider different values

of the predator growth factor b. Figure 2 shows the orbits in the phase plane165

and the respective nullclines for each set of parameters.

Figure 2a shows a solution reaching the equilibrium EN , where the predators

go extinct and the prey population is at carrying capacity. In this case the value

of b is such that condition (14) holds, which means EN is stable.

Where condition (14) is reversed, there is a transcritical bifurcation, i.e., the170

coexistence equilibrium ENP becomes feasible and exchanges stability with EN .

Initially, ENP is a stable node but becomes a stable spiral when b is increased

(Fig. 2b). For even larger values of b, Figure 2c shows an attracting invariant

circle generated by a Neimark-Sacker bifurcation, which is the discrete-time

analogue of a Hopf bifurcation (Elaydi, 2000; Hale and Koçak, 2012). This175

sequence of bifurcations and changes of equilibrium type can also be seen in the

bifurcation diagram in Figure 3.

In comparison to the continuous-time Rosenzweig-MacArthur model, despite

the fact that the shape of the predator nullcline is slightly different, our model

has not only equivalent equilibrium points (extinction, prey only and coexis-180

tence equilibrium), but also the same sequence of bifurcations when we increase
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Figure 2: Solutions of model (10) in the phase plane with the prey and predator nullclines

showing different qualitative behaviour of the solutions as the predator growth factor b in-

creases: (a) stable prey-only state, for b = 1.47; (b) stable coexistence equilibrium, for b = 2.5;

(c) oscillatory coexistence on an invariant curve, for b = 3. The solid lines (red) represent the

predator nullclines and the dashed lines (blue) the prey nullclines. The equilibrium points E0,

EN and ENP are represented by circles, according to their stability: empty circles when the

equilibrium point is unstable and filled circle if it is stable. Black line connects orbits. Initial

condition: (N0,P0)=(0.6,0.1), k = 2 and λ = 2.

the predator’s growth factor b: transcritical bifurcation and Neimark-Sacker bi-

furcation. Moreover, the equilibrium type of coexistence state for b increasing

is also similar to the continuous case, i.e., first non-feasible, then stable node,

then stable spiral and finally an unstable spiral with an invariant circle.185

3.2. Hydra effect and bifurcation diagrams

We now investigate the effect that the mean predator population size in-

creases as its survival factor decreases. This non-intuitive phenomenon, known

as hydra effect, has been the subject of many theoretical and experimental stud-

ies and has important implications for pest and resource management (Schröder190

et al., 2014).

Figure 3 shows the bifurcation diagram and the mean population size of

system (10) as function of the parameter b, which decreases as the predator

mortality increases. Thus, we can see an increase in the mean predator popula-

tion size as we decrease the value of b, provided the dynamic is unstable (here195

b > 2.8). This demonstrates the occurrence of the hydra effect in our model.
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Figure 3: Bifurcation diagram of system (10) and mean population size (solid black line) for

each value of b showing the final 50 points after 1500 iterations for (a) prey (blue points), (b)

predators (red points). The mean populations size was evaluated over the final 500 iterations.

At stable equilibria, the mean population size curve coincides with the equilibria values. λ = 2,

k = 2 and random initial condition.

3.3. Paradox of Enrichment

The paradox of enrichment, first mentioned by Rosenzweig (1971) in con-

tinuous-time predator-prey models, is characterized by a destabilization of the

coexistence equilibrium point via a Hopf bifurcation (Freedman, 1976). As the200

carrying capacity is increased, the limit circles move closer to one or both axes

in the phase plane, thus making stochastic extinction more likely.

For illustration, we first present solutions of system (10) reaching the stable

coexistence equilibrium in Figures 4a and 4b. When the carrying capacity is

increased, the coexistence equilibrium loses stability and the solutions oscillate,205

which generates an invariant circle that can come close to the axes in the phase

plane (see Fig. 4c and 4d).

The bifurcation diagrams for varying carrying capacities are shown in Figure

4e and 4f. There is a Neimark-Sacker bifurcation at k ≈ 1.8, above which the

amplitude of oscillations increases and the population sizes vary from near zero210

to high values, when the system becomes enriched (large values of k).
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Figure 4: Solutions of model (10) in time and in the phase plane showing different qualitative

behaviours as the carrying capacity increases: (a)-(b) stable coexistence equilibrium, for k =

1.4; (c)-(d) oscillatory coexistence on an invariant circle, for k = 2.7. In (b) and (d) the

solid line (red) represents the predator nullcline and the dashed line (blue) the prey nullcline.

The empty circles in Figures (b) and (d) represent unstable equilibrium points. Figures (e)

and (f) show the bifurcation diagram of system (10) as function of k for prey and predators

population, respectively. λ = 2 and b = 3.
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4. Different order of events

In the previous sections we studied a discrete-time predator-prey model in

which the events of reproduction and intra-specific competition act first, followed

by predation. In this section, we investigate two other models by considering215

different orders of events. The first one considers predation acting first, followed

by the effect of reproduction and intra-specific competition (P → R model). The

second one assumes delayed density dependence and is developed considering

that, after reproduction and intra-specific competition, the fraction of prey that

escapes predation depends on the number of prey prior to this stage (R → PD220

model). After that, we discuss the quantitative and qualitative differences and

similarities of the models.

4.1. Model formulation for different orders of events

For the P → R model, we follow analogous steps as in the previous sections

to develop the model equations. In other words, we assume that the fraction225

of prey that reproduce and survive from intra-specific competition is composed

of the fraction that has escaped predation. This scheme is illustrated in Figure

1b. Using the same notation of the previous sections, the general equations are

given by

Xt+1 = Xtg(Xt, Yt)f(Xtg(Xt, Yt)),

Yt+1 = BXt (1− g(Xt, Yt)) .
(16)

For the R→ PD model, we consider the same order of events as in R→ P ,230

but with delayed density dependence. This delayed density dependence comes

from the assumption that, after the event R, the fraction of prey which is

preyed upon by Pt predators depends on the prey population prior to R. May

et al. (1981) called this case “not the most obvious way of introducing density

dependence into the host life cycle”, in the case of host-parasitoid systems, but235

also pointed out that it may correspond to some natural situations, such as

the larvae of the winter moth (Operophtera brumata), which is attacked by a

parasitoid fly (Cyzenis albican) at Wytham Woods (U.K.).
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Thus, the general equations for the R→ PD model are given by

Xt+1 = Xtf(Xt)g(Xt, Yt),

Yt+1 = BXt (1− g(Xt, Yt)) .
(17)

Unlike model (8), the fraction of prey that escapes predation depends only240

on Yt and Xt. It is also possible, but analogous, to examine this model by

considering that predation acts first, so that those individuals that escape pre-

dation will reproduce and may die due to intra-specific competition, but at a

level dependent on the population prior to P .

4.2. Results for different orders of events245

In order to compare the models developed in this section (P → R and

R → PD) to the first model (R → P ), we choose the same functions f(X) and

g(X,Y ) as in (6) and (7), respectively (see Appendix C). We observe that both

P → R and R→ PD models show the same types of equilibrium points, namely,

the extinction of both species, prey-only and the coexistence equilibrium, as well250

as the same sequence of bifurcations described in section 3.1 and illustrated in

Figure 2. Furthermore, the hydra effect and the paradox of enrichment are also

observed in both P → R and R→ PD models.

Here, we focus on the different quantitative and qualitative behaviour of the

models. For this sake we show in Figure 5 the bifurcation diagrams as function255

of the predator growth factor b for both the prey and predator population.

First, let us compare the models R → P and P → R. In these models, the

order of events in the prey population is different, however, the relative temporal

order is the same (Åström et al., 1996). Thus, the only difference between them

is the time of measurement of population size. Therefore, it is obvious that the260

prey coexistence equilibrium in the model R → P (when the prey population

is measured after predation) is smaller than the prey coexistence equilibrium

in the model P → R (when it is measured after reproduction). This different

quantitative behaviour is shown in Figure 5a. On the other hand, Figure 5b

shows the same quantitative behaviour for the predator population for both265
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Figure 5: Bifurcation diagrams (symbols) and mean population sizes (lines) for the models

R → P (blue crosses and solid line), P → R (red circles and dotted line) and R → PD (black

stars and dashed line) as function of the predator growth factor b. The diagrams show the

maximum and the minimum value reached by the solutions. For stable equilibrium points

these values coincide, whereas after the Neimark-Sacker bifurcation they correspond to the

maximum and minimum value reached by the corresponding invariant limit circle. λ = 2,

k = 2 and random initial conditions.

R → P and P → R models. This is due to the fact that in both models there

is only one event (consumption) in the predator population within generation t

and t + 1, such that the event P is always preceded by the prey reproduction,

i.e., the relative temporal order is again the same.

Furthermore, the models R → P and P → R have the same qualitative270

behaviour. The possible reason for that is the fact that the functions f(X) and

g(X,Y ) are one-to-one, which makes systems (5) and (16) topologically conju-

gated. If we had chosen one of the functions for f or g to be non-surjective, for

example, the qualitative behaviour of the systems could have showed significant

differences (Hilker and Liz, 2013).275

Let us now compare models R → P and R → PD. The delayed density de-

pendence is responsible for the different quantitative and qualitative behaviour,

as shown in Figure 5. In particular, the parameter range where the coexis-

tence equilibrium is stable has been extended. Hence, interestingly, the delayed

density dependence in this case has a stabilizing effect. This seems interest-280
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ing because delayed density dependence is often associated with destabilizing

effects (May, 1973, 1974) and the appearance of alternative attractors (Franco

and Hilker, 2014).

5. Discussion and Conclusions

We studied a discrete-time predator-prey model by including logistic prey285

growth and a type II functional response in the Nicholson-Bailey framework.

We developed three different discrete-time predator-prey models by considering

distinct orders of events in the prey population. First, reproduction followed by

predation, second, predation followed by reproduction, and third with delayed

density dependence.290

In our first model we observed similar behaviour to the Rosenzweig-MacAr-

thur continuous-time model. To be more precise, it exhibits the hydra effect

when increasing predator mortality and it also shows the paradox of enrichment

when increasing prey carrying capacity. It has the same three equilibrium points,

and their stability properties appear to be analogous to those in the Rosenzweig-295

MacArthur model. In particular, we observed the same sequence of bifurcations

and equilibrium types when varying the predators growth factor.

The Rosenzweig-MacArthur model is widely used in theoretical ecology and

has gained almost iconic importance. It serves as a building block in con-

structing food web models (Yodzis, 1989; Pimm, 2002; Loreau, 2010). There300

has been tremendous interest in discrete-time versions of this model. Yet, ex-

isting discrete-time predator-prey models frequently show dynamics very dif-

ferent from it. For example, many of the discrete-time predator-prey models

show cycles and chaos. One reason for this more complex behaviour is the

derivation of the discrete-time model. There have been approaches to discretize305

the Rosenzweig-MacArthur model by Euler approximation (Hadeler and Gerst-

mann, 1990) or by piece-wise constant arguments (Fan and Wang, 2002). Those

discretizations, however, introduce time delays causing complex dynamics not

existing in the original model. This is most obviously evidenced by the prey dy-

16



namics in the absence of predators. In many discrete-time predator-prey models,310

prey growth follows the quadratic (Hadeler and Gerstmann, 1990; Neubert and

Kot, 1992; Liu and Xiao, 2007) or Ricker map (Beddington et al., 1975; Lane

et al., 1999), which by themselves show period-doubling bifurcations leading to

chaos even in the absence of predators. In our model, in contrast, in the absence

of predators, the prey grow logistically according to the Beverton-Holt equation.315

Our model also shows some minor differences to the Rosenzweig-MacArthur

model: the predator nullcline is not a vertical line and there is a lack of a

closed solution for the coexistence equilibrium. Even though we do not want to

claim our model is the discrete-time version of the Rosenzweig-MacArthur, its

behaviour is very similar to the continuous-time case.320

While discrete-time models assume a certain order of events, in continuous-

time models all processes take place simultaneously. We also compared the

qualitative and quantitative behaviour of models with different orders of events.

For instance, we considered a model with delayed density dependence and ob-

served not only qualitative and quantitative behaviour, but also a non-intuitive325

stabilizing effect, where the parameter range in which the equilibrium is stable

was extended.

Here we investigated a model based on the Nicholson-Bailey framework

with an average encounter rate between predators and prey following a type

II functional response, preceded or followed by logistic prey growth. There may330

be other discrete-time models showing similarly analogous behaviour to the

Rosenzweig-MacArthur model. It is our hope that this paper may contribute

to increasing attention to the intricacies of modelling predator-prey dynamics

in discrete time.

Appendix A: Proof of the uniquiness of the coexistence equilibrium335

For the coexistence equilibrium, N∗ is the positive solution of the transcen-

dental equation

(1 +N∗F (N∗)) ln(F (N∗)) = bN∗ (F (N∗)− 1) , (18)
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and P ∗ is given by

P ∗ = bN∗ (F (N∗)− 1) . (19)

It is feasible if N∗, P ∗ > 0, which implies F (N∗) > 1. Thus, from equation (11),

we obtain N∗ < k.340

Equation (18) can be rewritten as

h1(N∗) = h2(N∗), (20)

where

h1(x) = ln(F (x)) = ln

(
λ

1 + ax

)
(21)

and

h2(x) =
bx (F (x)− 1)

1 + xF (x)
=
bx(λ− 1− ax)

1 + (a+ λ)x
, (22)

where a = λ−1
k > 0.

Function h1 is such that h1(0) = ln(λ) > 0, h1(k) = 0, and it is a monotoni-345

cally decreasing function since h′1(x) = − a
ax+1 < 0 for any x > 0. On the other

hand, function h2 has two roots x = 0 and x = k; its graph is concave down

because h′′2(x) = − 2bλ(a+λ−1)
[(a+λ)x+1]3 < 0 for any x > 0, since a, b > 0 and λ > 1.

A solution of equation (20) is x = k. Combining this solution with equation

(19), we obtain the equilibrium EN = (k, 0).350

Therefore, we conclude that there is up to one solution N∗ ∈ (0, k) which

satisfies equation (20). Thus, the coexistence equilibrium ENP , when it exists,

is unique.

Appendix B. Linear stability analysis

Stability analysis of the equilibrium points of model (10):355

• E0 = (0, 0). The extinction equilibrium point is always unstable. The

eigenvalues of the Jacobian Matrix are

µ1 = λ > 1, µ2 = 0. (23)
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• EN = (k, 0) with eigenvalues

µ1 =
1

λ
< 1, µ2 =

bk

1 + k
. (24)

Since |µ1| < 1 for every value of λ > 1, the prey-only equilibrium is stable

if and only if |µ2| < 1, which leads to condition (14) for the stability of360

EN .

• ENP = (N∗, P ∗), where N∗ is the positive solution (if there is one) of (18)

According to the Jury conditions, ENP is stable if and only if

|tr(J(ENP )| < 1 + det(J(ENP )) < 2. (25)

Appendix C: Models P → R and R → PD

Here, we present the non-dimensional version of the models P → R and365

R→ PD discussed in the main text.

Model P → R

Choosing the same functions f(X) and g(X,Y ) given by equations (6) and

(7), respectively, we can write the non-dimensional P → R system as

Nt+1 = λNtG(Nt,Pt)
1+(λ−1)G(Nt,Pt)/k

,

Pt+1 = bNt [1−G(Nt, Pt)] ,

(26)

where G(Nt, Pt) is given by370

G(Nt, Pt) = exp

(
−Pt

1 +Nt

)
. (27)

System (26) has three equilibrium points, E0 = (0, 0), EN = (k, 0) and

ENP = (N∗, P ∗), where N∗ is the positive solution (if there is one) of

(1 +N∗) ln

(
λ− (λ− 1)N∗

k

)
= bN∗

(
1− 1

λ− (λ− 1)N∗/k

)
, (28)

and P ∗ is given by

P ∗ = bN∗
(

1− 1

λ− (λ− 1)N∗/k

)
. (29)
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Model R→ PD

Analogously, the non-dimensional R→ PD system is given by375

Nt+1 = NtF (Nt)G(Nt, Pt),

Pt+1 = bNt[1−G(Nt, Pt)].

(30)

System (30) has three equilibrium points, E0 = (0, 0), EN = (k, 0) and

ENP = (N∗, P ∗), where N∗ is the positive solution (if there is one) of

bN∗
(

1− 1

F (N∗)

)
= (1 +N∗) ln(F (N∗)), (31)

and P ∗ is given by

P ∗ = bN∗
(

1− 1

F (N∗)

)
. (32)

Stability analysis of the equilibrium points, in both P → R and R → PD

models, leads to equations (23)-(25).380
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