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ARTICLE INFO ABSTRACT

Cooperation is a ubiquitous behavior in many biological systems and is well-known for promoting Allee effects.
However, few studies have paid attention to mechanisms inducing Allee effects in predators. Here, we focus on
hunting cooperation and use a classical predator—prey system for identifying the impact of this mechanism. We
add a cooperation term to the attack rate of the predator population, and investigate the equilibrium stability in
phase plane and bifurcation diagrams. We show that hunting cooperation can be beneficial to the predator
population by increasing the attack rate. We identify a scenario in which hunting cooperation produces Allee
effects in predators and allows the latter to persist when the prey population does not sustain them in the
absence of hunting cooperation. However, hunting cooperation can turn detrimental to predators when prey
density drastically decreases because of increased predation pressure, which in turn decreases the predator
intake. Hunting cooperation can also destabilize the system and promote a sudden collapse of the predator
population. We generalize the model and prove that demographic Allee effects always occur when (1) the attack
rate increases with the predator density, and (2) the functional response increases with the attack rate. We
conclude that Allee effects in predators might be more widespread than expected. Mechanisms inducing such
effects may strongly influence not only predators, but also the fate of ecosystems involving predators as in
biological control programs.
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1. Introduction

Social interactions between individuals are an integral part of life
history traits for many species (Courchamp et al., 2008). In particular,
cooperative behavior within a population is a widespread and impor-
tant phenomenon in biological systems (Dugatkin, 1997). It can induce
a positive relationship between the per capita growth rate and
population density, which is called a demographic Allee effect
(Stephens et al., 1999; Courchamp et al., 2008). This effect can
potentially lead to population extinction, which has recently seen
renewed interest in both theoretical and empirical studies of biological
conservation in endangered or exploited ecosystems (Courchamp et al.,
1999; Stephens and Sutherland, 1999; Kramer et al., 2009; Gregory
et al., 2010; Lidicker, 2010).

Populations rarely exist in isolation, but interact with other species.
Ecologists have recognized many mechanisms for inducing Allee effects
in prey, such as reproductive facilitation, cooperative breeding, anti-
predator behavior, foraging efficiency, and environmental condition-
ing. Allee effects can equally exist in predators. Yet, theory has largely

focused on Allee effects in prey (e.g. Bazykin, 1998; Courchamp et al.,
2000; Liermann and Hilborn, 2001; Boukal and Berec, 2002; Kent
et al., 2003; Gascoigne and Lipcius, 2004; Zhou et al., 2005; Jang,
2006; Boukal et al., 2007). Allee effects in predators have been
considered as resulting from size-selective predation (de Roos and
Persson, 2002; de Roos et al., 2003), mate-limitation (Bazykin, 1998;
Zhou et al.,, 2005; Verdy, 2010; Bompard et al., 2013), positive
feedbacks of top predators on nutrient cycling (Brown et al., 2004),
or foraging facilitation among predators (Berec, 2010).

Foraging facilitation appears a particularly interesting phenomenon
in predator populations. Many living organisms cooperate for hunting,
especially carnivores (Macdonald, 1983), including lions (Packer et al.,
1990; Scheel and Packer, 1991), wolves (Schmidt and Mech, 1997),
African wild dogs (Creel and Creel, 1995), and chimpanzees (Boesch,
1994), but also aquatic organisms (Bshary et al., 2006), birds (Hector,
1986), ants (Moffett, 1988), and spiders (Uetz, 1992). As individuals
work toward finding and attacking prey, they can provide more
resources to the population and thus positively affect life-history traits.
However, we are aware of only two studies that address hunting
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cooperation in predator—prey models. Cosner et al. (1999) derive a
functional response for predators that forage in a spatially linear
formation and aggregate when they encounter a cluster of prey.
Berec (2010) analyzes a predator—prey model that he generalizes to
cooperative hunting. He finds that hunting cooperation has a destabi-
lizing effect on predator—prey dynamics, by extending the parameter
range that allows limit cycle oscillations.

Here, we study how different intensities of hunting cooperation
affect predator density, predator survival, and the stability of the
ecological community. In our model, we assume that, due to hunting
cooperation, the predator attack rate increases with predator density.
While this approach is similar to the one in Berec (2010), there are two
important differences. First, we focus on the ecological scenario in
which predators are unable to survive without hunting cooperation. It
is in this scenario that cooperation is of essence, and we show that it
can mediate survival of the predators that would go extinct otherwise.
The second difference is that the model used by Berec (2010) assumes a
type II functional response, which can generate sustained predator—
prey oscillations even in the absence of cooperative effects. Our model
assumes a linear functional response. That is, there are no sustained
predator—prey oscillations possible in the absence of hunting coopera-
tion. The oscillations that we observe in the presence of hunting
cooperation are therefore clearly generated by the cooperative beha-
vior.

2. Hunting cooperation in a classical predator—prey model
2.1. Model description
We extend the classical Lotka—Volterra model with logistic growth

of the prey by including hunting cooperation. Predator—prey models
can be written in the form

d—N = rN(l - E) — @®(N, P)P,

dt K

ar e®d (N, P)P — mP,

dr (€Y

where N and P are prey and predator densities respectively, r is the per
capita intrinsic growth rate of prey, K is the carrying capacity of prey, e
is the conversion efficiency, and m is the per capita mortality rate of
predators. All parameters are positive. Function @ (N, P) is the func-
tional response of predators on prey, i.e. the rate at which individual
predators kill prey. It is often presumed to depend only on prey density,
and in the case of the Lotka—Volterra model this dependence is linear,
i.e. ®(N, P) = AN, where 1 > 0 is the attack rate per predator and prey.

In the case of hunting cooperation, the functional response depends
on both prey and predator densities. We assume that cooperative
predators benefit from their behavior, so that the success of attacks on
prey increases with predator density. We represent this assumption in
the model by replacing the constant attack rate A by a density-
dependent term:

@D (N, P) = (A + aP)N, 2)

where a > 0 is a parameter describing predator cooperation in hunting.
In what follows, we will refer to aP as the cooperation term. If a=0, we
retain a predator—prey model without hunting cooperation. If we
allowed a < 0, this would correspond to predator interference, but we
would need to floor the term 4 + aP at zero to prevent negative values.

For better comparison with the hunting cooperation model by Berec
(2010), we briefly outline his approach which assumes a type II-like
functional response of the form

p(P)N

&N, P)= —"71
W, P) 1+ h(P)p(P)N

that saturates with increasing prey density. If hunting cooperation is
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“encounter-driven”, the encounter rate between predators and prey
(synonymous with attack rate) is generalized to

Po

—— b20,
b+ Py

b >

3)
and if hunting cooperation is handling-driven, the predator handling
time of prey is generalized to #(P) = ho(b + P)", b > 0. In both cases,
values of w > 0 yield foraging faciliation (i.e., hunting cooperation),
w=0 retains a functional response of Holling type II, and w < 0 yields
predator interference.

Our model (2) is similar to Berec's encounter-driven functional
response. In particular, for w = —1 and & (P) = 0, the Berec functional
response (3) reduces to Eq. (2), with A corresponding to p,b and a
corresponding to po. In a later Section, we will generalize the relation-
ship between attack rate and predator density in model (2), beyond the
form (3) used by Berec (2010).

In the following, we will consider a non-dimensionalized version of
model (1) with the functional response (2). Introducing the dimension-
less variables

p(P) =

el A
n= peA p= P T = mt,

and the dimensionless parameters

elK | am

G:i;l(‘=m,(l=7 C))
model (1), (2) becomes

an = n[a(l - in) -1+ ap)p:|,

dr K

dp

- = 1 - 1],

e plL(1 + ap)n ] (5)

which depends on three parameters only. This is the model we will
analyze in the following.

2.2. Equilibria and phase plane analysis

The predator population can persist in the system if the prey
population is large enough to sustain the predators. This situation
occurs when the carrying capacity of prey is larger than a critical prey
density defined by the nontrivial predator nullcline

1
n= .
1+ap

(6)

The prey population can only increase if it withstands the predation
pressure. As the predation pressure depends on the predator density,
prey population growth is restrained at the critical prey density defined
by the nontrivial prey nullcline

n=K[1 _ m]
- @)

Taken together, these nullclines give information about the number
of nontrivial equilibria, and their representation in the phase plane
provides clues about equilibrium stability (Fig. 1). In particular, the
dynamics of model (5) are well-known in the absence of cooperation,
i.e. when a = 0. In this case, the predator nullcline equals n=1, which is
the non-dimensionalized critical prey density for the predator survival
in the absence of cooperation. The value of x compared to this critical
prey density is of great importance for equilibrium stability. When the
prey carrying capacity is above this critical prey density, both nullclines
(6) and (7) intersect exactly once for all other parameter values
(Fig. 1D). The system thus reaches a coexistence equilibrium that is
globally asymptotically stable (e.g. (Kot, 2001)). However, when the
prey carrying capacity is below this density (Fig. 1A), the nullclines (6)
and (7) do not cross: because the prey population cannot sustain the
predator population, the latter goes extinct, while the prey population
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a=1

p, predator population density

Fig. 1. Phase plane diagrams for the hunting cooperation model (5). Solid lines represent the predator nullclines and dotted lines represent the prey nullclines. Filled circles correspond
to stable stationary states and empty circles to unstable stationary states. Arrows indicate the direction of the vector fields. Note the different scales of the horizontal axes. a = 0, 0.1, and

1 from the left to the right column, ¢ = 10, x = 0.8 (A-C), x = 1.2 (D-F).

reaches its carrying capacity.

When predators cooperate, i.e. when a > 0, dynamics are more
complex because the nullclines are not linear anymore. As previously,
two main cases can be distinguished depending on x values. Recall that
Kk is a non-dimensionalized parameter and comprises the dimensional
carrying capacity, the conversion efficiency as well as the per-capita
predator mortality and attack rate, cf. Eq. (4). In fact, x can be also
interpreted as the predator basic reproduction number, defined as the
average number of offspring generated by a single predator during its
lifetime when introduced into a prey population at carrying capacity. If
the basic reproduction number is greater than one, predators can
survive and coexist with prey, whereas they go extinct if x < 1.

In the coexistence case (x> 1), the corresponding nontrivial
equilibrium is unique as the nullclines always cross once. The
occurrence of coexistence is not affected by the intensity of hunting
cooperation (Fig. 1E-F). We however notice that cooperation affects
the equilibrium values. The prey density at equilibrium decreases with
increasing a, because the success of attacks on prey, and as a
consequence the predation pressure, increase as predators cooperate
(Fig. 1E-F). For the predator density at equilibrium, there is a hump-
shaped relationship with the hunting cooperation. The predator
population increases with small values of a, because predators better
forage on prey (Fig. 1E), but decreases with large values of a as a
consequence of the decrease in prey density (Fig. 1F; note the scale on
the horizontal axis).

In the predator extinction case (x < 1), two different situations can
occur. First, for small values of a, the prey population remains too
small to sustain the predator population even if there is hunting
cooperation. Consequently, predators go extinct for all initial condi-
tions (Fig. 1B). Second, for larger values of a, the cooperative behavior
in predators is large enough to make their survival possible. The
nullclines intersect twice (Fig. 1C), and the vector fields of the system
indicate that the coexistence equilibrium with the larger predator
density is stable, while the other coexistence equilibrium is unstable.
The system is bistable: the predator population can still go extinct for
low initial predator densities, which is a characteristic of strong Allee
effects. Hence, cooperation allows large predator populations to
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survive, whereas all predator populations are doomed to extinction
without cooperation. In what follows, we will focus on the cooperation-
mediated coexistence in the extinction case (k < 1).

2.3. Allee thresholds

If the cooperation is strong enough to mediate coexistence, there is
a strong Allee effect in the predator population. The so-called Allee
threshold is the critical predator density below which predators go
extinct and above which predators survive. This critical predator
density can be found as the boundary between the basin of attraction
of the coexistence state on the one hand and the basin of attraction of
the predator-extinction state on the other hand (Fig. 2). Obviously, the
Allee threshold varies with the prey population density. The higher the
prey population density, the smaller the Allee threshold.

Fig. 2 suggests that increasing hunting cooperation leads to smaller
Allee thresholds. This has the effect of reducing the risk of predator
extinction. Moreover, increasing hunting cooperation strengthens the
resilience of the coexistence state, as its basin of attraction becomes
larger with increasing values of a and can therefore absorb greater
perturbations. Correspondingly, the basin of attraction to the prey-only
state becomes smaller for increased levels of cooperation.

2.4. Bifurcation behavior

We now investigate the bifurcation behavior in the case of
cooperation-mediated coexistence (x < 1). We begin by varying the
cooperation rate a (Fig. 3). The predator—extinction equilibrium
(n =k, p = 0) is always stable for all values of a (solid gray lines). If a
predator population cooperates weakly (0 < a < 0.44), it does not
persist and goes extinct for all initial conditions in the positive
quadrant. The prey population thus reaches its carrying capacity. We
find a limit point bifurcation at a = 0.44, where two branches of
coexistence equilibria emerge. One of them is stable and the other
one is unstable. The system therefore becomes bistable when predators
cooperate more strongly. That is, predators can either go extinct
because of strong Allee effects or persist depending on the initial
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\ C

p, predator density

Fig. 2. The Allee threshold of the predator population and the basins of attraction for different cooperation levels, (A) a = 0.45, (B) a = 0.6, (C) @ = 1.5. The Allee threshold depends on
the prey density and is given by the separatric curve (thick dashed) between the basins of attraction to the coexistence state (gray area) and to the prey-only state (white area). The
thinner lines represent the predator (solid) and prey (dotted) nullclines. Filled circles correspond to stable stationary states and empty circles to unstable stationary states. The separatrix
has been computed numerically by running system (5) and checking whether the solution at the end of the simulation is close to one of the two attractors. Other parameter values:

6=10,k=08 and a = 045 (A), « = 0.6 (B), « = 1.5 (C).

A

0.8 |-

04+

n, prey density

p, predator density

o, cooperation rate

Fig. 3. Bifurcation diagram of prey (A) and predators (B) for model (5) when varying a.
Solid gray lines indicate the predator—extinction equilibrium, which is always stable.
Solid black lines indicate stable coexistence equilibria and dashed black lines indicate
unstable coexistence equilibria. Bold black lines indicate the maxima and the minima of
periodic oscillations. Limit points are denoted by LP, and Hopf bifurcations are denoted
by HB. ¢ = 10 and « = 0.8.

condition. For even larger values of a, a Hopf bifurcation occurs
(a = 18.6): the stable coexistence equilibrium loses stability so that
stable limit cycle oscillations emerge, and their amplitudes quickly
increase with a.

When the prey population is foraged by a cooperative predator
population in the predator extinction scenario (x < 1), it can either
reach its carrying capacity or a smaller density at equilibrium, so that
predator cooperation has a neutral or a negative effect on prey,
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respectively (Fig. 3A). By contrast, predators can benefit from their
hunting cooperation because it may facilitate their survival. However,
this is true only when the cooperation rate and the predator density are
large enough. Predator density at the stable coexistence equilibrium
shows a hump-shaped relationship with cooperation rate (Fig. 3B),
something we already observed for the case x > 1 (Fig. 1E,F).
Because prey life-history traits can also strongly influence dy-
namics, we continue the exploration of the equilibrium stability by
varying the per capita growth rate of prey o and fixing a at 10 (Fig. 4).

A

0.8

n, prey density

4
%
T

p, predator density

0 i i i
0 2 4

o, per capita growth rate of prey

Fig. 4. Bifurcation diagram of prey (A) and predators (B) for model (5) when varying o.
Solid gray lines indicate the predator—extinction equilibrium. Solid black lines indicate
stable stationary states and dashed black lines indicate unstable stationary states. Bold
black lines indicate the maxima and the minima of periodic oscillations. Homoclinic
bifurcations are denoted by HC, and Hopf bifurcations are denoted by HB. « = 10 and
k=0.8.
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For o values larger than 4.36, the system is bistable, with either stable
coexistence or predator extinction. A Hopf bifurcation occurs at
o = 4.36, and the coexistence equilibrium loses stability for o values
smaller than 4.36. The system remains bistable, but coexistence is now
oscillatory due to the limit cycle that emerges in the Hopf bifurcation.
The limit cycle can, however, collide with one of the unstable
coexistence equilibria in a homoclinic bifurcation (¢ = 1.2). The pre-
dator—extinction equilibrium thus becomes the only stable state when
o = 1.2, which renders the system monostable.

Additional simulations of the equilibrium stability when varying o
show that dynamics can in fact be more complex than in Fig. 4
(Appendix A). In particular, the system can exhibit two Hopf bifurca-
tions, and the oscillations emerging from each of these bifurcation
points form a bubble (Fig. A.1) (cf. examples of bubbling in Oliveira
and Hilker (2010), Liz and Ruiz-Herrera (2012)). A counter-intuitive
impact of the prey growth rate on dynamics is highlighted by these
bifurcation diagrams (Fig. 4A and Fig. A.1). We notice that the prey
density at equilibrium decreases with increasing growth rate, which
may appear paradoxical. In the Lotka—Volterra model without co-
operation (a = 0), the prey density at equilibrium actually remains
constant when varying o. Here, the seemingly paradoxical observation
is an indirect consequence of hunting cooperation that promotes large
densities for predators that forage on fast growing prey. This increases
the predation pressure on prey, which density at equilibrium decreases
in turn.

2.5. Two-parameter bifurcation

At this point, we have considered the effects of @ and o separately.
Now we complement the bifurcation analysis by varying o with a
simultaneously (Fig. 5A). The two-parameter bifurcation diagram
shows that for small values of a and o, the predator—extinction
equilibrium is the only stable state of the system (white area). Above
the solid line, which corresponds to the limit point bifurcation, the
system is bistable. On the one hand, the prey and the predator
populations can reach either the coexistence equilibrium or the
predator—extinction equilibrium (gray area). On the other hand, for
larger values of a, the coexistence equilibrium loses stability due to a
Hopf bifurcation. On the right-hand side of the dotted line correspond-
ing to the Hopf bifurcation curve, the system is bistable between the
predator—extinction equilibrium and cyclic coexistence (dotted area).
Moreover, the curves of the limit point bifurcation and Hopf bifurca-
tion tangentially touch in a Bogdanov—Takens bifurcation point. This is
also where a homoclinic bifurcation curve emerges. As a consequence,
the cyclic coexistence can suddenly disappear and cause predator
extinction for all initial conditions.

Finally, Fig. 5B shows a two-parameter bifurcation diagram when a
and x are varied simultaneously. This diagram recaps some findings
from the phase plane analysis. If x > 1, there is a unique coexistence
equilibrium. If x < 1, the predator population goes extinct unless a
large enough value of a induces a strong Allee effect and allows the
survival of large predator populations. The gray area in Fig. 5B marks
the parameter region of cooperation-mediated coexistence. The neces-
sary level of cooperation is the smaller, the higher the prey carrying
capacity.

In addition, Fig. 5B shows that the stable coexistence state becomes
unstable when increasing cooperation or enriching the carrying
capacity. The destabilization takes place via a Hopf bifurcation and
gives rise to sustained predator—prey oscillations. The oscillations
occur for both cases x < 1 and « > 1. We do not observe homoclinic
bifurcations in Fig. 5B, because of the large value of o. For smaller
values of g, we have found homoclinic bifurcations for x < 1 (not shown
here).

17

Journal of Theoretical Biology 419 (2017) 13-22

>

o, per capita growth rate of prey

0 4 8 12
«, cooperation rate

os!

.g . ‘. .' :
=% . te
g ; S
éo R 5 ° " .
E TS0 COC+PE
g “~-A__‘__~; o .° .
- SC+PE e

° P

PE
e T T T
0 10 20 30

«, cooperation rate

Fig. 5. Two-parameter bifurcation diagrams of model (5) for varying a and (A) o, (B) k.
The solid line represents limit point bifurcations (LP), the dashed line Hopf bifurcations
(HB), and the dotted line homoclinic bifurcations (HC). In the white area, the predator
population goes extinct (predator extinction — PE) or coexists with the prey (stable
coexistence — SC, oscillatory coexistence — OC). In the gray area, a strong demographic
Allee effect occurs. The system is bistable and approaches either predator extinction or a
coexistence attractor, which can be stable or oscillating. In (A), the curves of the limit
point bifurcation and Hopf bifurcation tangentially touch in a Bogdanov—Takens point
denoted by BT. This is where the homoclinic bifurcation curve emerges that renders the
system monostable. Parameter values: (A) x = 0.8, (B) ¢ = 10.

3. Generalization
3.1. Generalized model

So far, our results are based on model (5) with the two assumptions
that (i) the functional response increases linearly with prey density and
(ii) the cooperation term increases linearly with predator density. In
order to verify that our results are not an artefact of these assumptions,
we now analyze a model with a generalized functional response
@ (N, A(P), h). We assume that the functional response depends on
prey density N, on a generalized attack rate with hunting cooperation
A(P) which may depend on P, and on a set of parameters h that can
represent extra parameters such as predator handling time. We return
to dimensional variables and parameters; starting from the dimen-
sional model (1), the generalized model reads

dN N

E = I’N(I—E)—¢(N,1(P), h)P,

dpP

— = eDd(N, A(P), h)P — mP,

i €PN, A(P), )P —m. ®)

in which parameters remain the same as before.
We now focus on the identification of demographic Allee effects in
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predators. We consider the per-capita growth rate F of predators

F=%2=

i = €PN, A(P), h) — m,

and investigate when it is positively correlated with predator density at
small predator densities, i.e.

dF

— > 0,
P |p_y

©)
which corresponds to the definition of a demographic Allee effect. Note
that a strong demographic Allee effect can only occur if F is negative for
small predator densities. This Section, however, is not restricted to
strong Allee effects. We can write inequality (9) as

0P (N, A(P), h) 0A(P)
0A(P) oP

> 0.
P=0

(10)

This means that the predator population experiences a demographic
Allee effect if, at small predator densities,

Condition (1): A(P) increases with P, and

Condition (2): ® (N, A(P), h) increases with 1(P).

Alternatively, inequality (10) would be satisfied if 1(P) decreases
with P, as could happen for predator interference, and if @ (N, A(P), h)
decreases with A(P). However, since we consider hunting cooperation,
we henceforth exclusively assume that the cooperation term A(P)
increases with predator density P, i.e. that Condition (1) is always
satisfied. Condition (2) implies that the functional response increases
with A(P). This seems reasonable and therefore suggests that a
demographic Allee effect may be widespread. Note that it is the case
for many functional responses commonly used in theoretical ecology,
including linear as well as type I, II, III, and IV functional responses.

3.2. Simulations

We verify the conclusions from the generalized model by numerical
simulations, for which we consider different functional responses that
increase with the attack rate. Here, we choose type II, type III, and type
IV functional responses. The corresponding model equations and their
non-dimensionalized versions are given in Appendix B. Fig. 6 shows
the two-parameter bifurcation diagrams when varying the cooperation
rate a and prey growth rate 0. We again focus on the case in which the
predator population cannot survive when they do not cooperate, by
choosing « = 0.8 < 1. The models contain extra handling time para-
meters, which we keep all fixed at the same value.

The model based on a type II functional response shows a
bifurcation behavior (Fig. 6A) quite similar to the one in Fig. 5. The
major difference is that the parameter region leading to limit cycle
oscillations is considerably expanded, mostly because the Hopf bifur-
cation curve turned counter-clockwise and is now almost vertical.
Moreover, the homoclinic bifurcation curve moved slightly such that
the parameter region of essential extinction shrank. Overall, the type II
function response promotes the possibility of sustained oscillation,
which is consistent with standard expectation.

The bifurcation diagram of the type IV based model (Fig. 6C) differs
from the one of the type II based model (Fig. 6A) in two aspects. First,
the Hopf bifurcation curve turned even further counter-clockwise.
Consequently, there is increased tendency for destabilization. Second,
the parameter region of essential extinction has markedly expanded,
which makes sense as a type IV functional response is known to induce
homoclinic bifurcations.

Surprisingly, the type III based model shows a significantly
different behavior (Fig. 6B). It is difficult to compare to the bifurcation
diagrams in Figs. 6A and C, because the non-dimensional model uses
some other dimensionless variables (Appendix B). Nevertheless, the
Hopf bifurcation curve notably does not touch the limit point curve. As
a consequence, there is neither a Bogdanov—Takens bifurcation point
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Fig. 6. Two-parameter bifurcation diagrams of the hunting cooperation models based on
functional responses of (A) type II, (B) type III, and (C) type IV. The meaning of lines,
shadings, and abbreviations are as in Fig. 5. Model equations used are (14)— (16),
respectively, with parameter values h; = 0.1, hp = 0.9, h3 = 0.1, hy = 0.5, and « = 0.8.
Note the different axes ranges.

nor a homoclinic bifurcation curve. We also tested other parameter
values (e.g. h»=0.2 and smaller), for which there are not even Hopf
bifurcations. In that case, the stable coexistence equilibrium does not
become destabilized by foraging facilitation. Type III functional
responses are known to have stabilizing effects.

4. Discussion

Social interactions within a population are an integral part of life
history traits for many species (Courchamp et al., 2008). They are
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known to deeply affect dynamics and densities in the entire ecosystem.
Current knowledge predicts that Allee effects in predators tend to be
destabilizing if they are caused by mate finding (Zhou et al., 2005;
Verdy, 2010) or hunting cooperation (Berec, 2010). This paper
confirms these findings, both in the case when predators go extinct
or persist in the absence of cooperation. In addition, this paper adds
three novel impacts of predator cooperation beyond destabilization,
namely (i) cooperation-mediated coexistence, (ii) overexploitation with
increasing predator density, and (iii) catastrophic cycle collapse if the
level of cooperation is too high.

4.1. Cooperation-mediated coexistence: a positive consequence of the
Allee effect

Hunting cooperation can ensure the persistence of the predator
population when predators would go extinct in the absence of hunting
cooperation. This extinction is described by the condition x < 1 and
could be caused, for instance, by a lack of prey or too high mortality
and hunting pressure. Cooperation can therefore allow predators to
persist in degrading environments and less favorable climatic condi-
tions, extend their range shifts to less productive ecosystems, or invade
habitats in which prey have better cover.

Cooperation-mediated survival is clearly a positive consequence of
the Allee effect induced by foraging facilitation. The Allee effect is often
associated with problems of rarity, which result in population decline
and extinction (e.g. (Courchamp et al., 1999; Berec et al., 2007)). In
applied ecology, species preservation, wildlife management and re-
source exploitation, Allee effects are consequently considered as some-
thing dangerous and therefore undesirable (see Dennis (1989)).

Given that the Allee effect goes back to animal sociality and
cooperative behavior (Allee, 1931; Stephens and Sutherland, 1999),
it is somewhat surprising that the inherently positive aspect of Allee
effects seems to be little appreciated in the literature. Here we have
shown that cooperation can be clearly beneficial for population
persistence and promotes ecosystem diversity. Moreover, our simula-
tions suggest that cooperation promotes the resilience of the predator—
prey coexistence state. There are some other modeling studies that
demonstrate a positive consequence of the Allee effect on the coex-
istence of competing species in a spatial context (Levin, 1974; Ferdy
and Molofsky, 2002; Molofsky and Bever, 2002; M'Gonigle and
Greenspoon, 2014). The current paper therefore extends the amount
of ecological situations in which Allee effects are actually friends, not
foes.

4.2. Overexploitation by large predator groups: negative
consequences of cooperation

Hunting cooperation can have not only positive, but also negative
effects for predators. If cooperation is too strong, then predator
equilibrium density declines with further increasing cooperation rate.
The beneficial impact of cooperation on predators is then overcom-
pensated by the decrease in prey density since a scarcer prey implies a
smaller predator density in turn. This happens in both ecological
scenarios of predator extinction and coexistence (cf. Figs. 3B and
Fig. 1E,F, respectively). This result is consistent with the assumptions
by Schmidt and Mech (1997) about wolf packs and the decrease of food
acquisition when the pack increases, for example.

Predators might not benefit from foraging indefinitely, which is why
at some point the attack could not increase with predator density
anymore. Instead, predator interference could dominate over foraging
faciliation at larger densities such that there is a hump-shaped
relationship between attack rate and density (Berec, 2010). In that
case, there is a regulation of predator densities, which could prevent
overexploitation of prey, depending on how exactly interference and
foraging facilitation interact.
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4.3. Population cycles and their sudden disappearance

We surprisingly find sustained oscillations in the model based on a
linear functional response. This reveals that hunting cooperation alone
(without a saturating functional response) can induce limit cycles. The
oscillations are probably caused by the foraging facilitation introducing
a delay in the predator response to the decrease in the prey density.

The generalized models based on type II, III, and IV functional
responses are known to produce predator—prey cycles even without
hunting cooperation (cf. respectively (Rosenzweig and MacArthur,
1963; Oaten and Murdoch, 1975; Freedman and Wolkowicz, 1986)).
In the presence of foraging facilitation, we found that all of these three
functional responses tend to have a destabilizing effect on the coex-
istence equilibrium. An exception is the type III functional response, as
it had no destabilizing effect at all in many of the numerical experi-
ments performed. This conforms that the impact of type III responses
is not clear-cut (Uszko et al., 2015).

The oscillations can however have a dramatic impact on the system,
as limit cycles can disappear through homoclinic bifurcations. In that
case, essential extinction of predators occurs for almost all initial
conditions. This situation occurs when the trough of a cycle drops
below the minimum viable population density set by the Allee effect. It
is particularly widespread in the model based on a type IV functional
response. The essential extinction scenario is typical for bistable system
with oscillations (Bazykin, 1998; Schreiber, 2003; Hilker et al., 2009;
Segura et al., 2016). An exception is again the type III response, as we
did not observe essential extinctions in the simulations performed with
this functional response.

Verdy (2010) also found homoclinic bifurcations, but they varied
only the carrying capacity. Here we have shown that cooperation itself
can cause cycle disappearance and ultimately predator extinction.

4.4. Conditions for Allee effects in generalized models

In addition to the introduction of the positive density-dependent
cooperation term to the predator—prey system, we also directly analyze
the per capita rate of the predator population, and conceptualize Allee
effects in predators. This allows us to formalize the conditions that
promote demographic Allee effects, independently from the exact
expression of the positive density dependent term we add in the
predator—prey system.

Generalization of the model reveals that hunting cooperation
always induces Allee effects in predators when both (1) the attack
term is positively correlated with the predator density, and (2) the
functional response increases with the attack rate. The first condition is
always satisfied in this work, because we exclusively consider foraging
facilitation. We note that it does not hold for predator interference, or
for hump-shaped attack rates that first increase with predator density
but then decrease when predator density becomes too large and
interference may dominate the positive effects of cooperation (Berec,
2010). The second condition is satisfied by many functional responses,
including linear, type II, III, and IV functional responses. We however
exclude functional responses which directly depend on the predator
density. The positive impact of cooperation on the attack rate can
indeed be counterbalanced by predator-density dependence, so that
demographic Allee effects cannot occur, and the predator population
does not benefit from their cooperation when hunting (Kramer et al.,
2009). As a consequence, in this study we do not consider ratio-
dependent functional responses, in which consumption depends on the
prey density per predator capita (Arditi and Ginzburg, 1989). We also
do not consider functional responses with predator interference
(Beddington, 1975; DeAngelis et al., 1975; Berec, 2010; Ptibylova
and Berec, 2015). Moreover, we ignore predator—prey models that do
not conform to the Lotka—Volterra framework based on functional and
numerical responses, such as the Holling—Tanner model (Tanner,
1975).
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4.5. Biological control implications, ecosystem consequences, and
population structure

This result can have important applications in biological control
using predators. Allee effects have been indeed discussed as one of the
potential causes of biological control failure, as they can alter predator
establishment and efficiency when controlling target pests (Freckleton,
2000). Our work however shows that Allee effects can turn positive for
cooperative predators, which benefit from an increased attack rate, and
can thus persist.

The increase in the attack rate with the predator density can also be
interpreted as an increase in the costs of anti-predator defense for the
prey (Skelly, 1992), so that the prey population becomes less efficient
against predator attacks when the density of the latter increases. Anti-
predator behavior, such as habitat selection, vigilance, and crypsis
(Ruxton et al., 2004), is well-known to induce Allee effects in prey
(Mooring et al., 2004; Courchamp et al., 2008). Here we reveal that
such behavior can also induce Allee effects at a higher trophic level. As
a consequence, we suppose that mechanisms leading to Allee effects or
promoting emergence of such effects through trophic cascades may be
more exhaustive than expected.

Here, we consider closed populations and assume homogeneity in
the environment and among the individuals. However, age- and size-
structured ecosystems are often more complex in nature, due to
individual behavior and spatial factors. Such factors can reverse the
fate of prey—predator systems. In particular, species that cooperate
when hunting are also known for living in groups and occupying a local
territory (Packer et al., 1990). The set of groups can be then seen as a
metapopulation or a spatially structured population (Hanski, 1999;
Fronhofer et al., 2012). Allee effects can occur within each group, but
this also affects the entire metapopulation with emerging Allee-like
effects that impose a threshold for groups below which the metapopu-
lation goes extinct (Amarasekare, 1998; Zhou and Wang, 2004). In this
work, we however suggest that Allee effects can be associated with
beneficial impacts of cooperation, and with persistence of endangered
species. In such a context, mechanisms leading to Allee effects may
turn beneficial for populations at risk of extinction, even in complex
structured ecosystems.

4.6. Final remarks

It is worth emphasizing that we obtained all these results from a
very basic predator—prey model, in which a simple cooperation term is
added to the attack rate for representing the benefits that hunting
cooperation brings to the predator population. Our model is a special
case of the more general model proposed by Berec (2010).
Nevertheless, we find four novel results. First, foraging facilitation
can mediate the survival of predators. We were able to obtain this
result because we started from the ecological scenario that predators
would go extinct without cooperation. By contrast, Berec (2010)
focused in simulations on the ecological scenario that predators persist
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Fig. A.1. Bifurcation diagram of prey for model (5) when varying o. Solid lines indicate
stable stationary states, dashed lines indicate unstable stationary states. Bold lines
indicate the maxima and the minima of periodic oscillations. The limit point bifurcation
is denoted by LP and Hopf bifurcations are denoted by HB. a = 10 and « = 0.65.

on the prey in the absence of cooperation. Moreover, we find that
predator survival is more resilient (robust to perturbations) for higher
levels of cooperation.

Second, we discover that too much cooperation can backfire to
predators as they may overexploit their prey. This holds in both
scenarios where predators would go extinct or survive without co-
operation. This has not been observed in the model by Berec (2010).
We speculate that this might be because Berec (2010) varied parameter
w that shows up in the exponent of the encounter rate (3), whereas we
varied parameter a that describes the proportional relationship (2)
between cooperation and predator density.

Third, we find that limit cycle oscillations can be induced by
foraging faciliation alone, because our model is based on the linear
functional response that does not yield oscillations without hunting
cooperation. The model by Berec (2010) is based on a saturating type II
functional response and is shown to extend the parameter range of
oscillations that already occur without foraging facilitation.
Furthermore, fourth, we find homoclinic bifurcations. They imply
another detrimental effect of foraging facilitation, because increased
cooperation can lead to cycle disappearance and predator extinction.
As we have reduced the number of parameters to three in the non-
dimensionalized model, we were able to more easily explore the
parameter space and model behavior.
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Fig. A.1 shows a bifurcation diagram with two Hopf bifurcations giving rise to a "bubble'.

Appendix B. Appendix B

Here we give the model equations that are based on functional responses of type II, III, and IV in the absence of hunting cooperation. The

models follow system (1) and the respective functional responses
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_ p(P)N?

P W, P =7 Hyp(P)N?’ 12)
_ p(P)N

v W, P) =17 Hyp(P)N + Hip(P)N?’ 13)

where H,, H,, H; > 0 are handling times, and H, > 0 describes how handling time increases with prey density due to group defense in the type IV
functional response. The attack or encounter rate is p(P) = 4 + aP in all cases and follows the assumptions on foraging facilitation presented in the
main text.

We now non-dimensionalize the models. For the type II based model, i.e. (1), (11), we obtain

a el ). A taep |
dr K 14+ +ap)n

dp _ [ (1 + ap)n _1]

dr 1+ A+ ap)n 14)
where h = Hl%, and all the other parameters and variables are as in the main text.
For the type III based model, i.e. (1), (12), we obtain
dn n ( + ap)np
— = nfo|l - —| - ————F——|,
dr K 1+ h(1 + ap)n®
dp (1 + ap)n? -
e lTim+ap | (15)
wheren= %N, p= /2P, c=mt,k= 2K, a=2[" h=H" ando=_.
m em m A A e m
For the type IV based model, i.e. (1), (13), we obtain
@_nol_g_ (1 + ap)p
dr K 14 hs(1 + ap)n + ha(1 + ap)n? |
d_p _ (1 + ap)n _
&  PlTsmUrapntad +ape | 16)
where h; = H3%, hy = H, %, and all the other parameters and variables are as in the main text.
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