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Social-ecological models are often used to investigate the mutual interactions between an ecological sys-
tem and human behaviour at a collective level. The social system is widely represented either by the
replicator dynamics or by the best-response dynamics. We investigate the consequences of choosing
one or the other with the example of a social-ecological model for eutrophication in shallow lakes, where
the anthropogenic discharge of pollutants into the water is determined by a behavioural model using the
replicator or a best-response dynamics. We discuss a fundamental difference between the replicator
dynamics and the logit formulation of the best-response dynamics. This fundamental difference results
in a different number of equilibria. We show that the replicator equation is a limit case of the best-
response model, when agents are assumed to behave with infinite rationality. If agents act less rationally
in the model using the best-response dynamics, the correspondence with the model using the replicator
dynamics decreases. Finally, we show that sustained oscillations observed in both cases may differ sub-
stantially. The replicator dynamics makes the amplitude of the limit cycle become larger and makes the
system come closer to full cooperation or full defection. Thus, the dynamics along the limit cycle imply a
different risk for the system to be pushed by a perturbation into a desirable or an undesirable outcome
depending on the socioeconomic dynamics assumed in the model. When analyzing social-ecological
models, the choice of a socioeconomic dynamics is often little justified but our results show that it
may have dramatic impacts on the coupled human-environment system.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

To account for mutual feedbacks between ecological systems
and socioeconomic systems, several articles have proposed
social-ecological models. The ecological model typically represents
the level of one or multiple resources using population dynamics,
whereas the socioeconomic model accounts for some human beha-
viour influencing the environment, often using evolutionary game
theory. Coupled social-ecological models have been widely used to
study fisheries or other harvested populations (Fryxell et al., 2010;
Lee and Iwasa, 2014; Bieg et al., 2017), lakes (Iwasa et al., 2007;
Suzuki and Iwasa, 2009; Iwasa et al., 2010), grasslands (Lee et al.,
2015), forests and land use (Satake and Iwasa, 2006; Satake
et al., 2007; Satake et al., 2007; Henderson et al., 2013; Lee et al.,
2015) and some other, sometimes general, ecological contexts
(Ibáñez et al., 2004; Tavoni et al., 2012; Iwasa and Lee, 2013;
Lade et al., 2013; Sugiarto et al., 2015; Bauch et al., 2016).
The ecological models used in these coupled human-
environment systems can most of the times be discussed, criticized
and improved by considering empirical and especially experimen-
tal data. For instance, models of eutrophication in shallow freshwa-
ter lakes are strongly supported by experiments, making them
reliable, sometimes predictive, and quite consensual (Scheffer,
1998; Carpenter, 2003). By contrast, the formulation used to model
human behaviour, often with the replicator dynamics (Tavoni
et al., 2012; Lade et al., 2013; Bauch et al., 2016) or the logit
best-response dynamics (Satake and Iwasa, 2006; Satake et al.,
2007; Iwasa et al., 2010), is usually not explicitly justified. Both
the replicator and the logit best-response dynamics come from
evolutionary game theory and describe the evolution of the collec-
tive choice of individuals between different strategies at a popula-
tion level, in our case a population of human agents. Despite a
growing body of empirical data (e.g. Hoffman et al., 2015), experi-
ments on humans’ behaviour do not allow for quantification of the
adoption of a strategy over large populations during a long enough
time since the experiments typically involve only a few dozen sub-
jects playing a simple game over usually ten rounds in a few hours
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(e.g. Dannenberg et al., 2015). As a consequence, there exist only
very few experiments that seem to give clear support for one of
the behavioural models, namely for the logit best-response formu-
lation (Lim and Neary, 2016; Mäs and Nax, 2016).

In the modelling literature in ecology and elsewhere, there seems
to be little awareness about the implicit assumptions and impact of
choosing the replicator over the logit best-response dynamics or vice
versa. This is a major issue, since conclusions derived from such
models may depend on the way humans are assumed to behave.
Conceptual links between the replicator and the logit best-response
have been described in the game theoretical literature (Hopkins,
1999; Hofbauer et al., 2009), but they are highly abstract and may
remain out of reach for many researchers. Their mathematical for-
mulation as well as the absence of a common terminology could pre-
vent other scientific branches from becoming aware of those links,
especially in economics, ecology and social sciences. Indeed,
Hopkins (1999) proved that the best-response dynamics can be
understood as a perturbed version of a generalized replicator dynam-
ics, and Hofbauer et al. (2009) proved that both dynamics could be
understood as smoothed or perturbed versions of a general fictitious
play process. To our knowledge, the consequences of such links in a
coupled social-ecological model have not been described. More gen-
erally, interpretations of these relationships beyond the mathemati-
cal result have not been discussed.

Here, we investigate the meaning of this formal link between
the replicator and a best-response dynamics by addressing the fol-
lowing question: ‘‘How does the choice of a socioeconomic model
impact the coupled social-ecological dynamics?” Throughout the
article, we refer to the socioeconomic system as the replicator
dynamics or as the logit best-response dynamics, whereas we refer
to the coupled social-ecological systems as models. We illustrate
and discuss the differences and the similarities of the replicator
and the logit best-response dynamics. Building upon work by
Suzuki and Iwasa (2009) and Iwasa et al. (2010), we previously
coupled a lake eutrophication ecological part with a socioeconomic
part using the logit best-response dynamics (Sun and Hilker, 2020).
We will refer to this model as the best-response model (BRM). In
the present article, we compare this previously studied model with
another version using the same ecological part but a different
socioeconomic part. In this new version, we use the replicator
dynamics instead of the best-response dynamics. We will refer to
this model as the replicator dynamics model (RDM). Both versions
have exactly the same ecological part, but they differ in the socioe-
conomic part. While the BRM has been studied before (Sun and
Hilker, 2020), the RDM and its analysis are novel. The focus of this
paper, however, is on the comparison between the BRM and RDM.
We find that the RDM and the BRM can yield very different model
outcomes in terms of the number and the stability of equilibria or
in the shape of the limit cycle. Yet, an analysis of the phase plane
shows a strong analogy between them: the nullclines of the RDM
give the limit case of the nullclines of the BRM when the human
agents’ rationality tends towards infinity.

This article is structured as follows. First, we derive the two
similar social-ecological models for lake eutrophication. We
explain and interpret a fundamental difference between the two
models, concerning the stability of situations where all agents
choose the same strategy. Then, we find that this fundamental dif-
ference has direct consequences on the possible number of equilib-
ria. We illustrate how the replicator dynamics can be considered as
giving the limit of the best-response dynamics under certain con-
ditions. And we describe oscillations and the subsequent make-
or-break dynamics of the RDM, which has not been described
before. Finally, we discuss the fact that failing to keep in mind
implicit assumptions about the socioeconomic dynamics chosen
might have dramatic consequences on the robustness of conclu-
sions obtained from studying social-ecological models.
2

2. Models

In this section, we derive two dynamic social-ecological models.
Both share the same ecological subsystem which describes lake
pollution dynamics and is the same as in Carpenter et al. (1999),
Suzuki and Iwasa (2009) and Sun and Hilker (2020). The two mod-
els differ in the human subsystem, which describes the dynamics
of the collective choice of human agents choosing between two
strategies, namely to pollute the lake at a high level or at a low
level. The two different formulations we consider for the socioeco-
nomic subsystem — the replicator dynamics (Tavoni et al., 2012;
Lade et al., 2013) for the RDM and the logit best-response dynam-
ics (Suzuki and Iwasa, 2009; Iwasa et al., 2010; Sun and Hilker,
2020) for the BRM — have already been used in a number of
social-ecological models.

2.1. Ecological subsystem

We use the model developed by Carpenter et al. (1999) which
can account for the bistability observed in shallow lakes. The state
variable representing the ecological subsystem is the level of pollu-
tion P (P P 0). It represents the amount of pollutants present in the
lake, such as the concentration of phosphorus in the surface waters
typically. The rate of change of P is given by

dP
dt

¼ A|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
anthropogenic

discharge of pollutants

� a P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
global outflow rate

ðoutflow and sedimentationÞ

þ r Pq

mq þ Pq|fflfflfflfflfflffl{zfflfflfflfflfflffl}
recycling

:

This assumes a linear global outflow rate (outflow and sedimen-
tation of pollutants leaving the surface waters) with parameter a.
The recycling term corresponds to the resuspension of pollutants
from the sediments into the water, which is stronger in shallow
lakes (less than 3 m deep). It corresponds to a sigmoid curve where
r determines the upper bound and m the half-saturation level of
pollutant density. The parameter q is negatively correlated to the
depth of the lake; for our models we have q P 2 (Carpenter
et al., 1999). In the model by Carpenter et al. (1999), the anthro-
pogenic discharge A of pollutants into the water is a constant.

From a game theoretical point of view, the anthropogenic dis-
charge of pollutants can be represented as a choice between two
strategies. A human agent may go on releasing a high amount of
pollution at rate pD (defection) or restrict their release to a lower
rate pD � dp (cooperation). dp corresponds to a reduction in pollu-
tant discharge (0 < dp 6 pD). If we consider the entire population,
the pollution release is the result of a collective choice character-
ized by the fraction F of cooperators in the population and the frac-
tion 1� F of defectors in the population:

A ¼ pD 1� Fð Þ þ pD � dp
� �

F:

Note that in this article, the term cooperation, which comes from
game theory, does not refer to a social interaction, but rather to an
environment-friendly behaviour. Similarly, defection refers to a less
environment-friendly behaviour by which an agent discharges a
higher amount of pollutants into the lake.

2.2. Socioeconomic subsystem

For the socioeconomic subsystem, the state variable is the frac-
tion F of cooperators among the human population, which takes
values between 0 and 1. For both the replicator formulation and
the best-response formulation, we consider a common term DU,
which can be interpreted equivalently as the incentive to cooper-
ate or as the cost of defection. DU represents the positive or nega-
tive difference in utility between the two strategies: when it is
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positive, cooperation is of benefit to each individual agent and
agents collectively tend to become cooperators, whereas the incen-
tive to defect is stronger when DU is negative. As in Sun and Hilker
(2020), we consider three terms for this incentive:

DU ¼ � t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
economic
baseline

þ n F|fflfflfflfflfflffl{zfflfflfflfflfflffl}
social

ostracism

þ j P|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ecological
concern

;

where:

� the baseline (�t) is assumed to be negative, because it is eco-
nomically easier for an agent to release high amounts of
pollution;

� social ostracism is represented by a linear term in Fwith param-
eter n accounting for the strength of their conformist tendency:
the more cooperators there are, the more people tend to
cooperate;

� the agents’ ecological concern is represented by a linear term in
P with parameter j: the more polluted the lake gets, the more
people tend to cooperate in managing the lake.

Suzuki and Iwasa (2009) argued for considering those factors
but assumed a bilinear formulation for DU. The interpretation of
this bilinear term is difficult and, in general, the functional form
of the utility function may involve complex phenomena across
multiple scales (Voors et al., 2011; Gurney et al., 2016). However,
for simplicity, we assume linear terms for the utility function in
this article. This simplified formulation allows us to gain more
insights into generic phenomena and is mathematically more
tractable (Sun and Hilker, 2020).

The formulation of the socioeconomic subsystemwith the repli-
cator dynamics in the RDM is:

dF
dt

¼ F 1� Fð ÞDU: ð1Þ

Derivations of this formulation (Hofbauer and Sigmund, 2003;
Tavoni et al., 2012) rely on the idea that agents are fully rational
and always choose the option which is the more advantageous
for them.

On the other hand, the logit best-response dynamics in the BRM
is Suzuki and Iwasa (2009), Suzuki and Iwasa (2009), Iwasa et al.
(2010), Sun and Hilker (2020)):

dF
dt

¼ s
1

1þ e�bDU
� F

� �
: ð2Þ

The mathematical formulation implies that there is always a
fraction of the human population changing their strategy. Parame-
ter b represents the agents’ rationality. When b is close to 0, agents
ready to change their strategy choose almost randomly between
the two strategies. When b is large, agents ready to change their
strategy tend to follow the more advantageous option according
to the sign of DU. When b ! þ1, every agent ready to change their
strategy switches without error to the best option according to the
sign of DU. Note that increasing parameters of the utility function
(t; n;j) is equivalent to increasing parameter b: we can interpret
an increase of the cooperating cost, agents’ conformism and eco-
logical concern as an increase in the agents’ rationality.

In this best-response formulation, it has been shown (Sun and
Hilker, 2020) that parameter s, representing the speed of the social
dynamics (Suzuki and Iwasa, 2009), has no influence on the exis-
tence or on the location of equilibria; therefore, we will restrict
our analysis to the case where s ¼ 1.

We do not present any new result concerning the BRM alone,
which we previously analysed (Sun and Hilker, 2020). However,
3

all results regarding the RDM and the comparison between the
BRM and the RDM are new.

2.3. Fundamental difference

The replicator dynamics assumes that full defection (F ¼ 0) and
full cooperation (F ¼ 1) are equilibria of the isolated socioeco-
nomic subsystem, whereas the logit best-response assumes that
full defection and full cooperation cannot be equilibria of the iso-
lated socioeconomic subsystem. Thus, a fundamental difference
between the two dynamics and between the two models is about
the stationarity of pure strategies, i.e. cases where all agents adopt
the same strategy. The choice to represent the socioeconomic sys-
tem by either the replicator dynamics or the best-response dynam-
ics is equivalent to assuming different limit cases. This is not an
indifferent or neutral choice: it may potentially change the output
of a model. So, it is of paramount importance that not only mod-
ellers but also policy makers acknowledge this fundamental differ-
ence as a key modelling choice.

Choosing the replicator dynamics means that we assume a
strong conformism of each agent to the group, because the adop-
tion of one strategy by the whole human population convinces
each agent to stay with the same strategy. This fits the idea, already
formulated by Aristotle (1973), that humans are naturally social
beings.

Choosing the logit best-response dynamics, on the contrary,
means that we assume that at least some agents always diverge
from an unanimous opinion since a fraction of the human popula-
tion always changes their strategy. This can be compared to a non-
zero mutation rate.

To sum up, the two models fundamentally disagree on the evo-
lution of a pure strategy, whether 100% of a behaviour makes the
socioeconomic situation stationary or not. This has been described
as the best-response dynamics being innovative (Hofbauer and
Sigmund, 2003, p. 494). Indeed, if unanimity of all agents prevents
any change of strategy, then the socioeconomic system can be
interpreted as non-innovative. On the contrary, if unanimity is
not stable, it means that some individual innovation at the agent
level happens to prevent stationarity, introducing a new strategy,
thus breaking unanimity and making the system innovative.
3. Results

In this section, we compare the two versions of the model: the
RDM and the BRM. We start with the impact of the socioeconomic
dynamics on the number of equilibria. Then, we explain how the
replicator dynamics and the logit best-response dynamics are
related in their nullcline structure. Finally, we describe the possi-
bility to observe sustained oscillations in the two models.

3.1. Location of stable equilibria

Here, we present analytical results on the location of stable
equilibria. We briefly summarize previous results concerning the
BRM before giving new results regarding the RDM. In particular,
the RDM allows for an intuitive interpretation of the stability of
possible equilibria in terms of critical pollution thresholds for full
cooperation or for full defection. This is the mathematical basis
for all of our other results in this subsection.

In the BRM, it has been previously shown that the system can
have up to nine equilibria arranged as a 3� 3 array in the phase
plane, with up to four stable equilibria (Sun and Hilker, 2020).
The RDM has the same P-nullcline for the ecological system. How-
ever, the replicator Eq. (1) is more tractable in a mathematical
analysis than the logit best-response Eq. (2) of the BRM. This allows
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for an easier analytical study of the location of stable equilibria and
is key for our results. In particular, the F-nullclines in the RDM are:

� the trivial nullcline F ¼ 0 (full defection);
� the trivial nullcline F ¼ 1 (full cooperation);
� the non-trivial nullcline DU ¼ 0 (no socioeconomic advantage
of changing strategies), which is a straight line in the phase
plane with equation F ¼ t� jPð Þ=n.

The analytical simplicity of the RDM allows for the definition of
a subset Z of the F-nullclines where all stable equilibria must be.
Indeed, by studying the eigenvalues of the Jacobian matrix at any
equilibrium P�; F�ð Þ, we find (Appendix A) that:

� no equilibrium with F� ¼ 0 can be stable if P� > PD ¼ t
j;

� no equilibrium with F� ¼ 1 can be stable if P� < PC ¼ t�n
j .

That is, there are two critical pollution levels PC and PD with
PC < PD. We can distinguish two cases. On the one hand, there
exists a critical pollution level PD above which no equilibrium with
full defection can be stable. This is because the high level of pollu-
tion would then force some agents into cooperating. On the other
hand, there exists a critical pollution level PC below which no equi-
librium can be stable with full cooperation. This is because the low
level of pollution would then allow some agents to defect.

Thus, all stable equilibria lie on an ‘‘edgy” sigmoid set Z that
takes the shape of a mirrored Z (Fig. 1, red solid line). The set Z
is defined by all points of coordinates P; Fð Þ with P P 0 satisfying
at least one of the following criteria:

P 6 PD

F ¼ 0

�
or

P P PC

F ¼ 1

�
or

DU ¼ 0
F 2 �0;1½ :

�

3.2. The replicator dynamics as the limit of the best-response dynamics

In this section, we summarize a link between the two beha-
vioural dynamics and thus between our two models. Proof and
details can be found in Appendix B.

In Section 3.1, we have shown that all stable equilibria of the
RDM must be on a certain subset Z of the nullclines for the socioe-
conomic subsystem. This subset Z comprises parts of the trivial
nullclines as well as the non-trivial nullcline in the feasible phase
Fig. 1. F-nullcline in the phase plane for the BRM (thin blue curves) with increasing
values for the agents’ rationality b. As b increases, the F-nullclines for the BRM
converge to the F-nullclines for the RDM (thick red lines), which is independent of b.
The RDM F-nullclines are composed of parts on which equilibria must be unstable Z
and a potentially stable set (Z). Parameter values: a ¼ 0:26, r ¼ 0:5, q ¼ 2, m ¼ 1,
pD ¼ 0:04, dp ¼ 0:0388, s ¼ 0:1, t ¼ 5, j ¼ 5, n ¼ 4. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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plane. We find that this subset Z is the limit of the F-nullcline of
the BRM when b ! þ1. This is illustrated in Fig. 1, where the F-
nullcline of the BRM has an S-shape for many values of b. The larger
the agents’ rationality b, the ‘‘edgier” the BRM F-nullcline. Ulti-
mately, for b ! þ1, the BRM F-nullcline takes the form of the
RDM F-nullcline.

Since b has an interpretation, this provides an intuitive link
between the two dynamics and between the two models: when
the human agents’ rationality b increases in the BRM, all equilibria
tend towards those defined by the replicator F-nullclines. In the
general case, our proof (see Appendix B) holds for all non-trivial
values of F, i.e. strictly between 0 and 1.

To our knowledge, such a remarkable link between the replica-
tor dynamics and the best-response dynamics, although it has been
formally studied in abstract terms (Hopkins, 1999; Hofbauer et al.,
2009), has not been illustrated graphically or exposed in intuitive
terms, and is usually not pointed out: in the case where exactly
two strategies coexist, the best-response dynamics converges
towards the replicator dynamics when the rationality of the agents
increases. This means that there is a transition between the two
dynamics and between the two models depending on the reliabil-
ity of the agents’ instantaneous choice for their more advantageous
option between cooperation and defection at any time.

3.3. Number of equilibria

The two models are bidimensional social-ecological systems of
lake pollution using the same ecological part. The socioeconomic
part is the only difference, which has a direct impact on the num-
ber of equilibria that the coupled system can have. In this section,
we find that the minimum number of equilibria is different
between the BRM and the RDM. Then, we show that the two mod-
els share the same maximum number of equilibria. Finally, we
illustrate the convergence of the number and location of stable
equilibria in terms of the agents’ rationality b.

The minimum number is one in the case of the best-response
dynamics (Sun and Hilker, 2020). It is two in the case of the repli-
cator dynamics (Appendix C).

The maximum number of equilibria has been shown to be nine
in the BRM (Sun and Hilker, 2020). In the most complex configura-
tion of the RDM, the P-nullcline has got the shape of an S with
roughly vertical branches in the P; Fð Þ-phase plane, and the Z-
shape of the F-nullcline consists of three roughly horizontal lines
in the P; Fð Þ-phase plane. As a consequence, the maximum number
of equilibria in the phase plane is also nine with the RDM. In both
the RDM and the BRM, the equilibria are organized as a 3� 3 array
in the phase plane, and up to four of them (those on the corners of
the square-like array) can be stable.

Depending on the specific value for b, the number of stable
equilibria can be very different between the two models. This is
illustrated in Fig. 2, where, at a low rationality level (b ¼ 0:2), the
BRM shows two stable equilibria whereas the RDM shows four
stable equilibria. For lower values of b, the BRM has fewer equilib-
ria than the RDM, and their locations do not coincide with the loca-
tions of the RDM equilibria. Since the agents’ rationality b in the
BRM relates to how close the model is to the RDM, we observe a
convergence in the number of stable equilibria as b increases.
When the agents’ rationality b increases, existing equilibria in
the BRM converge towards some equilibria in the RDM
(b 2 0:2;0:4½ �). Moreover, new stable equilibria appear in the
BRM to match the number of stable equilibria in the RDM
(b 2 0:8;1:0½ �). For sufficiently large values of b, the number and
location of equilibria of the BRM and of the RDM coincide.

As a consequence, the outcome of the models critically depend
on the formulation we assume for the socioeconomic system.
Indeed, if agents behave in a very rational manner (like in the



Fig. 2. Bifurcation diagram showing the level P of pollution of the RDM stable equilibria (dashed red) and of the BRM stable (solid blue) and unstable (dotted blue) equilibria
for different levels of the agents’ rationality b. For simplicity, unstable equilibria in the RDM are not depicted. Parameter values as in Fig. 1, except for a ¼ 0:4; r ¼ 0:8;j ¼ 0:25
and n ¼ 8. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Example of a large limit cycle in the phase plane (black) in the RDM. The
straight red lines indicate the F-nullclines in the RDM. For comparison, the F-
nullcline of the BRM is shown as a dashed orange line and the corresponding limit
cycle is in grey. The solid blue P-nullcline is common to both models. Parameter
values as in Fig. 1, except for b ¼ 1. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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RDM or in the BRM with a high rationality b), then policy makers
may expect multistability. Conversely, if agents do not behave
rationally, then policy makers can expect a lower number of stable
equilibria. For modellers, the important result is that choosing
either the replicator dynamics or the logit best-response dynamics
is not neutral: this modelling choice must be justified in terms of
the expected rationality of the agents’ behaviour. Note that, here,
we do not mean a mechanistic or constructive justification, as is
often the case in game theory. Rather, we mean a phenomenolog-
ical justification as to whether policy makers should expect the
agents to behave more or less rationally: the fundamental differ-
ence exposed in Section 2.3 makes this explanation of the mod-
elling approach necessary.

3.4. Cycles and make-or-break dynamics in the replicator dynamics
model

The occurrence of cycles has been described previously in the
BRM (Sun and Hilker, 2020). In this section, we focus on the
RDM, where we find qualitatively similar sustained oscillations,
but which may have significantly different outcomes in the pres-
ence of perturbations of the state variables.

Our simulations suggest that sustained oscillations may exist in
particular when there is one non-trivial equilibrium (with F in
�0;1½) as in Fig. 3, and when this equilibrium loses its stability
through a Hopf bifurcation. This is similar to previous reports by
Suzuki and Iwasa (2009) and Sun and Hilker (2020) for the BRM.
However, limit cycle oscillations can also occur when there is more
than one equilibrium, and they can exist in complex multistability
or global bifurcation scenarios (Sun and Hilker, 2020). In the RDM,
the phase plane then includes two trivial equilibria which happen
to be located out of the potentially stable subset Z in addition to
the non-trivial equilibrium.

The oscillations can be explained in a similar way as those
observed in the BRM (Sun and Hilker, 2020):

� with little cooperation, the level of pollution increases;
� higher levels of pollution let the cooperating strategy spread
among the agents;

� the increase in cooperation ends up decreasing the level of
pollution;

� lower levels of pollution favour the spread of defection.

In the following, we will investigate two aspects of the oscilla-
tions in some more detail. The first aspect is that the limit cycle in
5

the RDM can be very large (Fig. 3). The second aspect is that, in the
BRM, oscillations occur only when the agents’ rationality b is suffi-
ciently large.
3.4.1. Large limit cycle
The limit cycle of the RDM shown in Fig. 3 is very large in the

sense that its trajectory stretches over almost the entire range of
possible values between F ¼ 0 and F ¼ 1. The limit cycle almost
looks like a heteroclinic cycle between the two unstable trivial
equilibria with F� ¼ 0 and F� ¼ 1. However, the stable manifold
of each of those two unstable equilibria does not meet the other
unstable equilibrium.

Thus, the system periodically gets very close to full cooperation
or to full defection. While cycling, the system may remain for long
periods of time in such a state where the probability is high that a
random perturbation may make the system actually enter full
cooperation or full defection. This is illustrated in Fig. 4. As a con-
sequence of both the large limit cycle and the long time spent near
F ¼ 0 or F ¼ 1, a random perturbation is likely to make the system
shift to the adoption of a single strategy by the whole population.
As the socioeconomic subsystem becomes stable when being in a
single strategy state (F ¼ 0 or F ¼ 1), the system would remain at
this equilibrium unless another perturbation reintroduces the



Fig. 4. Time plot of a large limit cycle in the RDM showing the fraction F of
cooperators (solid red) and the level P of pollution (dashed blue). Parameter values
as in Fig. 1, except for n ¼ 3. Initial condition: P ¼ 0:5; F ¼ 0:5ð Þ. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Bifurcation diagram showing the extrema of the fraction F of cooperators in
the asymptotic regime for different levels of the agents’ rationality b in the BRM
(solid blue), which overlap when the equilibrium is asymptotically stable. The
chosen configuration always displays a unique equilibrium in the BRM (dotted
blue) and a single non-trivial equilibrium in the RDM (dotted red), which is
unstable. The maximum and minimum of the RDM limit cycle (dashed red)
corresponds to the case where b ! 1. Other parameter values as in Fig. 1, except
for a ¼ 0:3 and pD ¼ 0:072. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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alternative strategy among the agents. This trivial equilibriummay
be a desirable one (low pollution, full cooperation) or an undesir-
able one (high pollution, full defection).

A perturbation close to full defection could trigger a complete
adoption of the defecting strategy and prevent any switch to a less
polluted ecological state. On the contrary, a perturbation near full
cooperation could prevent the loss of the cooperating behaviour
among the population and keep the pollution level low. This sug-
gests that the specific part of the cycle where a perturbation occurs
may dramatically change the final outcome of the transient beha-
viour. This is shown in Fig. 5. To express this idea, we suggest to
use the term make-or-break dynamics, characterized by dramatic
success or failure outcomes with no intermediate option in
between (Analytis et al., 2019). By make-or-break dynamics, we
mean that the same deterministic system can undergo a dramati-
cally desirable (‘‘make”) or dramatically undesirable (‘‘break”) shift
towards either full cooperation or full defection based solely on the
part of the cycle where a perturbation happens.
3.4.2. Oscillations in the best-response dynamics model are associated
with large rationality

Previous numerical results in the BRM (Sun and Hilker, 2020)
suggest that the agents’ rationality b needs to be sufficiently large
Fig. 5. Time plot of the RDM fraction F of cooperators from the same initial
condition but perturbed (triangles) at different times on the large limit cycle,
showing the scenario without perturbation (dotted black), a scenario with a
perturbation at t ¼ 400 (dashed blue) and a scenario with a perturbation at t ¼ 500
(solid red). The perturbation consisted in reaching F ¼ 0 or F ¼ 1 when the system
is very close to full defection or full cooperation. Parameter values as in Fig. 4. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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to allow for the nullclines to be S-shaped and for oscillations to
occur. Because of the link we have described between the two
socioeconomic dynamics, this means that cycles may appear in
the BRM only if it is close enough to the replicator dynamics. It
seems that, under the same parameter values, cycles cannot occur
in the BRM if they are absent from the RDM. This is illustrated in
Fig. 6, where limit cycles in the BRM appear only for sufficiently
large values of the rationality parameter b.

However, two distinct factors play a role in the occurrence of
oscillations. The first one, reported here, is the agents’ rationality.
The second factor is the location of the equilibrium on each null-
cline. Indeed, simulations show that equilibria tend to be unstable
on the middle part of the S-shaped nullclines but stable on the
outer branches. The two factors cannot be disentangled on the
one hand because the agents’ rationality has an impact on the loca-
tion of the equilibria on each nullcline, and on the other hand
because the location of the equilibria on each nullcline depends
simultaneously on many parameters. Regarding other factors, the
relative speed or different time scales of the ecological and socioe-
conomic systems has an impact on the occurrence of oscillations,
but this impact is not monotonic (Appendix D).
4. Discussion and conclusions

Our results show that conclusions drawn from the study of
social-ecological systems can strongly depend on the specific for-
mulation of the socioeconomic subsystem. For example, Fig. 2
shows that the RDM and the BRM exhibit a different number of
stable equilibria. Fig. 3 shows that cycles can have different prop-
erties in the two models, with the RDM suggesting a make-or-
break dynamics that may be absent from the BRM, which may have
no limit cycle oscillations at all, as in Fig. 6 for b ¼ 0:1.

Divergent features between the RDM and the BRM are conse-
quences of the fundamental difference we have described in Sec-
tion 2.3: the former assumes that extreme strategies (here, full
defection or full cooperation) are stationary, the latter assumes
that extreme strategies are not stationary. Therefore, the replicator
dynamics may be more appropriate when having evidence of
strong social conformism, where agents tend to follow mass move-
ments. Examples may include social learning or any kind of social
behaviour. On the contrary, the logit best-response dynamics with
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a low rationality for agents may be more appropriate if there is evi-
dence that group behaviours cannot impair individual innovation
from the agents, which tend to act independently. Examples
include biological mutations and similar noisy systems where vari-
ation happens on a random basis. In humans, similar noise could
represent deviations from pure flock behaviour. Notably, individu-
als changing their strategy for a time might not have very strong
fitness or utility consequences, which allows for a more explora-
tory behaviour.

The advantage of the logit best-response dynamics, though, is
that the parameter representing the agents’ rationality allows for
the investigation of different levels of rationality. At the cost of this
additional parameter, the logit best-response dynamics offers
more ‘‘flexibility”. Indeed, the higher the rationality, the closer
we are to the replicator dynamics, the more we assume that indi-
vidual agents are influenced by group behaviour. The lower the
rationality, the farther we are from the replicator dynamics, the
more we assume that individual agents act independently. This is
an interpretation we can give to the mathematical link suggested
by Hopkins (1999) and Hofbauer et al. (2009) about the relation-
ship between the two dynamics. Hopkins (1999) showed that the
best-response dynamics is a perturbed version of a generalized
replicator dynamics. Hofbauer et al. (2009) proved that when the
best-response dynamics has a global attractor, then the time aver-
age of the average strategy given by the replicator dynamics has
the same attractor. Depending on the aim of the modelling
approach, it may be more advantageous either to cover a broader
range of situations and use the logit best-response equation, or
to have a parsimonious model with fewer parameters and use
the replicator equation.

The replicator dynamics may seem more capable of represent-
ing some biological systems with mutation-like variations. Indeed,
we could expect some homogenization of the agents’ strategies like
in the case of a strong selection pressure. However, what determi-
nes an optimal strategy in the replicator dynamics is that this strat-
egy is unanimously adopted: it is a social effect. The replicator
dynamics makes a strategy become optimal if it is unanimous,
whereas a strong selection pressure makes a strategy unanimous
if it is optimal. The two phenomena match only in the case where
social adoption of a strategy plays an important role in determin-
ing the individual agent’s resulting fitness. In our models, this cor-
responds a strong social conformism, due to ostracism for instance.
Without clues of such strong social effects however, we should not
expect the replicator dynamics to represent any biological system
better than the best-response dynamics. As a general rule, the best
response dynamics can be seen as more apt to represent noisy sys-
tems. Agents do not know the exact level of pollution, nor the con-
sequences of their action. These could be modelled as a noise in the
system, where some agents change their behaviour because none
of them have perfect information on the ecological system.

In the case where no formulation of the socioeconomic subsys-
tem is better supported by some empirical data or theoretical,
mechanistic account than the other, it would be recommendable
to investigate more than one formulation of the socioeconomic
model and to check which results are robust against the model
choice. This corresponds to our case, since no evidence tells us
either that polluting agents tend to follow the majority blindly,
nor that they constantly and independently innovate towards
other levels of pollutant discharge. It is difficult to anticipate which
of our conclusions hold for different socioeconomic systems and
which depend on the particular system we assume if we do not
check different formulations. Thus, uncertainty about the way
the socioeconomic subsystem dynamics potentially threatens the
robustness of results involving the study of such a socioeconomic
system. Therefore, if comparing different socioeconomic dynamics
is not possible or too cumbersome, we should keep in mind that
7

the often implicit assumptions on the dynamics of the socioeco-
nomic system might lead to results that are specific for these
assumptions and might lead to very different results when using
a different socioeconomic model.
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Appendix A. Jacobian matrix in the replicator dynamics model

Here, we consider the RDM. The replicator dynamics of Eq. (1)
implies that the socioeconomic system in isolation would be at
equilibriumwhen we have either full defection (F ¼ 0) or full coop-
eration (F ¼ 1).

For the coupled social-ecological system, we can study the sta-
bility of equilibria using the Jacobian matrix evaluated at the said
equilibria. Indeed, the stability of an equilibrium depends on the
sign of the Jacobian matrix’s eigenvalues.

In the RDM, the Jacobian matrix of the system at any point P; Fð Þ
in Rþ � 0;1½ � is

rqmqPq�1

mqþPqð Þ2 � a �dp

jF 1� Fð ÞP �3nF2 þ 2 t� jP þ nð ÞF þ jP � t

0
@

1
A:

In particular, if F ¼ 0 or if F ¼ 1, we have simple expressions for
one of the eigenvalues kF of the Jacobian matrix evaluated at this
point:

kF ¼ jP � t for F ¼ 0 and kF ¼ t� jP � n for F ¼ 1:

For an equilibrium to be stable, no eigenvalue of the Jacobian
matrix should be positive. Thus, if F ¼ 0 or if F ¼ 1, we have simple
restrictions on the possible value of P for equilibria to be stable
since it depends on the sign of kF . Indeed, if F

� ¼ 0, any equilibrium
with P� > PD ¼ t

j must be unstable. Similarly, if F� ¼ 1, any equilib-
rium with P� < PC ¼ t�n

j must be unstable.

Appendix B. The replicator dynamics gives the limit of the logit
best-response dynamics

Here we show that, when j– 0, the RDM F-nullclines include
the limit of the BRM F-nullcline when b tends to infinity. As that
statement is obviously false in the specific case where j ¼ 0, we
assume that j– 0.

First, consider the RDM. The subset Z of the F-nullclines we
define in the main text is restricted to values for P in Rþ. Let us



Fig. 7. Bifurcation diagram showing the extrema of the fraction F of cooperators in
the asymptotic regime for different levels of the socioeconomic system’s relative
speed s in the BRM and in the sRDM (solid blue, overlapping), which overlap when
the equilibrium is asymptotically stable. The chosen configuration always displays a
unique equilibrium in the BRM and in the sRDM (dotted blue, overlapping), and a
single non-trivial equilibrium in the RDM (dotted red), which is unstable. The
maximum and minimum of the RDM limit cycle are shown in dashed red. Other
parameter values as in Fig. 6, except for b ¼ 1. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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consider an extended set Z0 defined as Z but for P 2 R. It is the
union of the three following sets:

Z0
0 ¼ P;0ð Þ; P 6 t=jf g;

Z0
1 ¼ P;1ð Þ; P P t� nð Þ=jf g;

Z0
�0;1½ ¼ P; Fð Þ 2 R��0;1 : DU ¼ 0½ g:f
Now consider the BRM and let Sb be the extended F-nullcline

over all real values for P with a particular value for the rationality
parameter b in �0;þ1½. It represents P as a function r of F:

Sb ¼ P; Fð Þ 2 R� 0;1½ � : P ¼ rb Fð Þ� 	
:

We show that for all values of b:

(i) rb is actually defined on 0;1½ � and continuous;
(ii) the limit of rb at the endpoints of its domain of definition
ensures that Z0

0 and Z0
1 are the asymptotic sets for Sb when b

tends towards infinity;
(iii) on 0;1½ �;Z0

0;1½ � is the limit of Sb when b tends towards
infinity.

The equation of the BRM F-nullcline is (Sun and Hilker, 2020)

0 ¼ 1
1þ e�bDU

� F:

It is possible to reformulate it for all values of b to consider that
the F-nullcline represents either P or equivalently DU as a function
of F on 0;1½ �

PBRM;b ¼ rb Fð Þ ¼ 1
j

1
b
ln

1� F
F

� �
þ t� nF


 �
ð3Þ

() DUBRM;b ¼ 1
b
ln

1� F
F

� �
ð4Þ

From Eq. (3) it is clear (i) that rb is actually defined on 0;1½ � and
continuous for all values of b.

Moreover, it makes it obvious (ii) that for all values of b

lim
F!0

PBRM;b ¼ lim
F!0

rb Fð Þ ¼ �1 and lim
F!1

PBRM;b ¼ lim
F!1

rb Fð Þ ¼ þ1:

Eq. (4) finally shows (iii) that

lim
b!þ1

Sb ¼ Z0
�0;1 :½

To conclude, Sb tends asymptotically towards Z0 when b
increases, and, as a consequence, the same can be said about their
respective restrictions to P 2 Rþ: when j– 0, the subset Z of the
RDM F-nullclines is the limit of the BRM F-nullcline when b tends
towards infinity.

Appendix C. Existence of at least two equilibria in the replicator
dynamics model

This section proves the following proposition: in the phase
plane P; Fð Þ 2 R

þ � 0;1½ �, the RDM has at least two equilibria
P�; F�ð Þ.

Consider the F-nullclines. They obviously consist of at least two
horizontal lines with the equations F ¼ 0 and F ¼ 1. Thus, it is suffi-
cient for the P-nullcline to include one point satisfying F ¼ 0 and one
point satisfying F ¼ 1 in R

þ � 0;1½ � for those points to be equilibria.
Now, consider the P-nullcline. If dp – 0, then it represents F as a

continuous function of P on Rþ (because m > 0 and q P 2), given
by

FP�null Pð Þ ¼ 1
dp

pD � aP þ rPq

mq þ Pq

� �
:
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Notice that FP�null 0ð Þ P 1 since pD P dp and that

lim
P!1

FP�null Pð Þ ¼ �1:

The intermediate value theorem then tells us that FP�null must
take the values 1 and 0 for P in Rþ.

In the phase plane, all points P; Fð Þ satisfying F ¼ 0 or F ¼ 1
belong to the F-nullcline. The P-nullcline has got at least one point
satisfying F ¼ 0 and one point satisfying F ¼ 1. As a consequence,
the system has at least two equilibria in the phase plane.
Appendix D. Influence of the relative speed s on the oscillations
in the logit best-response model

This section is about the asymptotic regime of the logit
best-response model using Eq. (2). Previously, we proved that the
relative speed s of the socioeconomic system with respect to the
ecological system had no effect on the location of the model’s
equilibria (Sun and Hilker, 2020). Therefore, we decided not to
focus on this parameter in the main text. Here, we show that
parameter s may impact the stability of an equilibrium and the
amplitude of the oscillations that we describe in the main text.

Fig. 7 shows that varying the relative speed parameter s in the
BRM has indeed no effect on the location of the equilibrium, but that
it can make sustained oscillations appear or disappear. In line with
Sun and Hilker (2020), this suggests that s has an impact on the equi-
librium’s stability. However, the effect of the relative speed s on the
occurrence and on the amplitude of the limit cycle is not monoto-
nous. Indeed, at low values of s, when the socioeconomic dynamics
is very slow, increasing s increases the size of the cycles until about
s � 0:06. Then, the amplitude of the cycles decreases as s becomes
larger. Finally, as soon as the socioeconomic dynamics is fast enough
(s � 0:4) compared to the ecological dynamics, the equilibrium
becomes stable and the sustained oscillations disappear.

Turning to the RDM, we can modify it into an sRDM by using the
following socioeconomic system instead of Eq. (1):

dF
dt

¼ sF 1� Fð ÞDU:

The difference is that we now introduce a relative speed param-
eter s with the same interpretation as in the BRM. In Fig. 7, the
sRDM shows the blue curves, i.e. it follows exactly the same
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asymptotic dynamics as the BRM. As a consequence, the effect of
parameter s on the sustained oscillations in the BRM is indepen-
dent from the formulation of the socioeconomic dynamics.

To conclude, the relative speed s of the two subsystems of the
BRM has no simple impact on the model’s asymptotic dynamics.
This contrasts with the effect of the agents’ rationality b, which
links the BRM and the RDM in a consistent, monotonous manner.
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