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1. Introduction

Parasites can affect their host in many ways. The concept of
virulence tries to encapsulate this in the damage a parasite inflicts
upon its host, typically expressed as a reduction in host fitness due
to infection (Read, 1994). Most mathematical models quantify
virulence as an additional disease-related death rate or disease-
induced reduction in fecundity (Day, 2002). However, there are
many other direct and indirect effects of infection, which are also
likely to affect parasite evolution (Alizon et al., 2009). For example,
it is well-known that parasites alter their hosts with respect to
resource requirements (Thompson et al., 2001), feeding rates
(Rivero and Ferguson, 2003), behaviour (Poulin, 1995; Thomas
et al., 1998; Lefévre et al., 2009) including activity levels (Moore,
2002) and the response to various forms of stress (Brown and
Pascoe, 1989; Renshaw et al., 1993; Bedhomme et al., 2005a).

There is some recent experimental evidence suggesting that
parasitism also changes competitive abilities of hosts (Bedhomme
et al, 2005). In general, however, little is known yet about these
indirect effects of infection on host life-history traits. The literature
is scarce and mostly focuses on parasitoids and macroparasites,
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both experimentally (Yan and Stevens, 1995; Bernstein et al.,
2002; Lane and Mills, 2003; Sisterson and Averill, 2003;
Koprivnikar et al., 2008) and theoretically (Bernstein, 1986;
White et al., 2007), and also involves some plant hosts (Friess and
Maillet, 1996; Damgaard and Jensen, 2002; Pagan et al., 2009).
Here, we investigate the consequences of differential (i.e.
parasite-modified) competitiveness in a model that takes into
account eco-epidemiological interactions. For this, we assume the
host is subject not only to parasitism, but also to predation. This
illustrates that the consequences of differential competitive
abilities go beyond the host population itself, i.e. they profoundly
impact other trophic levels as well. We find that it is crucial to
identify how exactly infectious diseases alter the competitive
strength of their host. In particular, we show that disease-modified
intraspecific competition makes possible the coexistence of all
species, which is impossible otherwise. However, we also show
that the coexistence can be fragile (due to bistability) and
dynamically complex (due to oscillations). These findings highlight
the importance of extending the study of parasite-mediated
modifications of host life-history traits beyond direct effects (e.g.
on reproduction) to indirect effects (e.g. on competitive abilities).

2. The epidemiological skeleton

The basis of any eco-epidemiological model is the epidemio-
logical skeleton, i.e. the submodel describing the infectious disease
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dynamics. In this section, after briefly reviewing an epidemiologi-
cal model with an explicit carrying capacity, we introduce a model
that accounts for disease-modified intraspecific competition. This
leads to emergent carrying capacities, and we will show that these
are markedly different to explicit carrying capacities that have
been employed in many eco-epidemiological models.

2.1. Explicit carrying capacity
A simple approach to modelling the spread of a disease in a host

population and the interaction of susceptible (S) and infected (I)
individuals is the following:

ds S+1
a_rss(177> — Vs, (1)
dI S+1
a_ r:I(l - T) +V(SI) - pul, (2)

Here, both subpopulations grow according to a logistic term
with a common and explicit carrying capacity K. The underlying
idea is that both susceptibles and infecteds contribute equally to
the density-dependence resulting from resource competition.
This model assumes that the disease is transmitted both
vertically and horizontally—the latter with rate V(S, I), which
may be density-dependent or frequency-dependent or some-
thing inbetween (Begon et al., 2002). Parameters rs and r; are the
intrinsic per-capita growth rates, i.e. when the total host
population is rare. Disease-reduced fecundity is reflected by
the constraint r; <rs. The parameter pu describes additional
disease-induced mortality. This model has been used in several
eco-epidemiological studies, but as we will see in the following,
this formulation is limited in its applicability by the assumption
of an explicit carrying capacity.

2.2. Emergent carrying capacity

A more general epidemiological skeleton is given by the
equations

%f = 1S — (csS+ cal)S — V(S, 1), (3)
dI
qr =" = (@l +asSI+ V(S 1) — . (4)

Here, the intrinsic per-capita growth rates of uninfected and
infected hosts are given by rs and rj, respectively. They represent
the net growth through density-independent reproduction and
mortality. Intraspecific competition results in reduced population
growth (due to increased mortality or decreased reproduction).
Specifically, the parameters c¢s and c¢; characterise intra-class
competition between susceptibles and infecteds, respectively,
whereas the parameters cs; and cjs describe the inter-class impact
of infecteds on susceptibles and the impact of susceptibles on
infecteds, respectively.

Note that this model does not explicitly state a carrying
capacity for the host population, as in the logistic growth
formulation (1) and (2). Instead, the model is formulated in terms
of intraspecific competition coefficients and we refer to this
concept as emergent carrying capacity, following the notation of
previous work on different variants of logistic growth (Bowers et
al., 2003; Hoyle and Bowers, 2007). The emergent carrying capacity
can be seen as an upper limit of population growth that arises from
relevant processes like reproduction and competition. Rather than
being a pre-determined number K, it is an emergent property
based on actual life-history traits.

2.3. Explicit carrying capacity as a special case of emergent carrying
capacity

Comparing the two formulations (1)-(2) and (3)-(4) it is clear
that the explicit carrying capacity model can be obtained from the
emergent carrying capacity model as the special case

CS:CSIZ% and CI:CIS:;_(’- (5)
Here, two remarks are in order. Firstly, the competition
coefficients are directly proportional to the intrinsic growth
rates rs;. Hence, the intrinsic growth rates not only represent
density-independent growth (as in the emergent carrying
capacity model) but also determine the strength of density-
dependent effects resulting from competition. This mingle-
mangle is a popular fallacy of the logistic growth equation (Fulda,
1981; Kuno, 1991), which in particular may lead to confusion
when it is applied in evolutionary models (Bowers et al., 2003;
Hoyle and Bowers, 2007; Mallet, 2012).

Secondly and more importantly, there is a not so obvious
assumption in the explicit carrying capacity model. The competi-
tive pressure experienced by a susceptible individual is the same
independently of whether it interacts with another susceptible or
an infected individual (cs=cs). The same holds true for the
competitive pressure experienced by infected individuals (c; = cjs).
That is, the coefficients describing the competitive pressure
received by an individual are pairwise equal.

Moreover, the fact that the competition coefficients of the
susceptible and infected equations differ is a result of the
constraint r; <rs. If r;=rs, all four competition coefficients are
equal. This may be a reasonable assumption if infection does not
change competitive interactions at all, but it seems odd that the
intrinsic growth rates are (the hidden) key in determining this.

The implicit assumption of pairwise equal competition
coefficients is not only built in models using the explicit carrying
capacity, but also shows up in other circumstances. Whenever
models assume density-dependent birth or mortality rates, and
this density-dependence is described by the total population, the
competition coefficients within one equation are effectively equal.
Such assumptions arise in many epidemiological models (e.g.
Anderson et al, 1981; Gao and Hethcote, 1992; Zhou and
Hethcote, 1994; Courchamp et al., 1995; Greenhalgh and Das,
1995; Barlow, 1996; Roberts, 1996; Lively, 2006; Hilker, 2009). The
more general approach (3) and (4) takes into account that the
infection status may change the competitive pressure exerted by
susceptible and infected individuals, respectively.

3. The full eco-epidemiological model
3.1. Model description

We now proceed by putting a specialist predator P on top of the
epidemiological skeleton (3) and (4) with emergent carrying
capacities. The host population is thus not only a resource for the
infection but also prey for the predator. We consider the following
model of a general predator-prey community with an infection of
the prey:

ds ASI asSpP

— =TS — (C55+ CS]I)S (6)

it TS+l RESHD)

dI ASI alP
a:r:If(C11+C155)1+57H*m*M17 (7
@7 eaS+1) P_mp (8)
dt " h+(S+1) ’
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Here we assume that disease transmission is frequency-dependent
with transmission coefficient A, an assumption that is typically
made for sexually transmitted diseases (Thrall et al., 1993) or
diseases spreading in populations with social behaviour (Altizer et
al., 2003). Consumption by predators is described by a saturating
Holling type II functional response with maximal growth rate q,
half-saturation constant h and resource conversion efficiency e.
Note that the predators are assumed not to distinguish between
healthy and infected prey individuals. The parameter m describes
the natural predator mortality rate. The S-P and I-P predator-prey
subsystems, which are obtained for I = 0 or S = 0, respectively, are
variants of the classical Rosenzweig-MacArthur model (1963).

Instead of using the healthy and infected subpopulations
directly as dynamic variables, it is often convenient to work with
the prevalence of the disease in the total population N=S +I. The
prevalence is defined as the ratio i = I/N of infecteds in the total
population. Note that S=(1 — i)N and I = iN. Rewriting the system
in terms of the new variables removes the singularity at S=1=0
and helps us to identify important parameter combinations:

dN ) aP

a = [0 - (9)
%: [ri — (cr — csr)iN — (cis — ¢5)(1 — DN](1 — )i, (10)
dP [ eaN

a:{hm*m}” (11)

We have defined two new expressions. Firstly,

G(N,i) = rs(I=i)+(m—p)i -
—_—,———
density-independent growth of S and I
+  (ca+c)i(l—i) N
| S

inter—class competition of S and I

cs(1—i)% + ¢
N e’

intra-class competition of S and I

is the per-capita growth rate of the total population in the presence
of disease but in the absence of predators. Secondly,

i=A—+r—1rs

is the net intrinsic spread rate of the disease prevalence in the
population. This last quantity is not to be confused with the
growth rate of infected individuals. It will appear several times
during the following analysis and therefore deserves a closer look.
One mechanism by which the disease can spread in the population
is via horizontal transmission represented by the transmission
coefficient A, which thus appears as a positive contribution to r;.
On the other hand, the spread of the disease is adversely affected
by anincreased mortality of infected individuals as reflected by u,
because this decreases the time an infected individual can
transmit the disease to susceptible hosts. The combined effect
of vertical transmission and the growth of the susceptible portion
as represented by the difference between the intrinsic growth
rates ryand rg is a bit more subtle. Clearly, vertical transmission of
the disease is beneficial for the disease and can increase
prevalence, as reflected by the positive contribution of r;.
However, this effect is diminished (or reversed) by increased
growth of the susceptible subpopulation, as this adds healthy
individuals to the total population and thus leads to a decrease in
disease prevalence.

It becomes apparent in formulation (9)-(11) that the spread of
the disease in the prey population as described by the prevalence
Eq. (10)is independent of the predator P. Conversely, the dynamics
of the predators as given by Eq. (11) does not depend on the
prevalence i. This is a direct consequence of the assumption that
the predators do not or cannot discriminate between healthy and

infected prey individuals—a scenario that has been investigated in
a more general setting by Sieber and Hilker (2011).

A special case of this model with an explicit carrying
capacity K has already been considered by Malchow et al.
(2004) and Hilker and Malchow (2006). A peculiar feature of this
special case is that stable stationary coexistence solutions do not
exist. In the following, we will show that the more general
formulation (6)-(8) makes coexistence equilibria possible and
allows for complex bifurcation scenarios. Therefore, in the next
section we will first investigate the existence and, where
possible, the stability of the equilibria. Thereafter, we will take
a closer look at some biologically plausible scenarios of
intraspecific competitiveness.

3.2. Stationary solutions

To investigate the equilibria of Eqs. (9)-(11) we define a series
of sets, on each one of which one of the three dynamical equations
vanishes. These sets form surfaces in the three-dimensional state
space and can be viewed as the analogous of the zero-isoclines (or
nullclines) in two-dimensional systems. Consequently, we will
refer to them as nullsurfaces from now on.

The rate of change dN/dt of the total population vanishes on the
two nullsurfaces

'Yy =1{(0,i,P)eR%y},
Iy {(NIP)ER O\P P*(N,i) = G(N,1i)

h+N
a

where R- o denotes the non-negative real numbers. Similarly, from
di/dt = 0 one obtains the surfaces

={(N.0,P)eR% },
={(N.1,P) R},

:{sz )€R2 oIN = N*(i) =

r; }
Cis — Cs +i(Cs + ¢ — €5 — Cis)

(12)
and from dP/dt=0
Iy = {(N,i,0)eR% y},
Fp:{(N,i,P)eRéO\N:N*:eanihm}. (13)

Nullsurfaces with a “0” superscript are referred to as trivial
nullsurfaces and they correspond to the boundaries of the
biologically relevant positive octant where one of the three species
is absent. The functions P'(N, i), N'(i) and N" will play a crucial role
in the following, since they determine the shape of the non-trivial
nullsurfaces. In particular, since N" is constant, the surface Ip is
always parallel to the F?\, surface.

Stationary solutions are obtained as the intersections of the
nullsurfaces, and the shape and configuration of the nullsurfaces
determine which equilibria actually exist. The trivial and semi-
trivial equilibria and their biological meaning are summarised in
Table 1. More details on existence and stability results can be found
in the Supporting Information S1.

3.2.1. Non-trivial equilibria

The geometric intuition provided by the nullsurfaces is
particulary useful to assess the existence of non-trivial coexistence
equilibria. Non-trivial stationary solutions are given as the
intersection E-=IynN ;N Ip. The prey nullsurface Iy always
intersects with both I; and [Ip. The existence of stationary
solutions therefore depends on the relative positions of I;and I'p.
Since the predator nullsurface I'p is constant, it is mainly the
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Table 1
Trivial and semi-trivial equilibria of system (9)-(11), see the Supporting
Information S1 for more details.

Equilibrium Biological meaning

Eo Extinction

En Prey only, disease-free

E, Disease-induced extinction

Enp Predator-prey, disease-free

Epp Predator-prey, all prey infected
E; Prey only, all prey infected
Enik, k=1, 2 Prey only, disease endemic

prevalence nullsurface [ that determines the existence of
stationary solutions.

Here, we can distinguish three different cases, which are
determined by the competition coefficients as follows:

Cs1+Cis = Cs +Cp
Cs; + Cis > Cs + Cp
Cs; + Cis <Cs +Cp

(equal inter- and intra-class competition),
(strong inter-class competition),
(weak inter-class competition).

If inter- and intra-class competition are equal, the existence of a
unique coexistence equilibrium is impossible. This is because in
this case the prevalence nullsurface I'; does not depend on i and is
parallel to the predator nullsurface I'p (Fig. 1a). At this point we
want to emphasize that, in the context of model (6)-(8), this
outcome is typical for many common forms of transmission rates,
including mass action (cf. Supporting Information S2).

The effect of disease-modified competition coefficients is to
bend the nullsurface I; of the disease prevalence and the direction
of bending depends on the particular case of competition, since this
determines whether N-(i) in the definition of I is increasing or
decreasing with prevalence i. If inter-class competition is strong,
the nullsurface bends towards the right-hand side (when looking
from the disease-free N-P surface into the interior of the positive
octant); cf. Fig. 1b. However, if inter-class competition is weak, the
nullsurface bends towards the left-hand side; cf. Fig. 1c. In either
case, this bending makes possible the existence of a unique
coexistence steady state. Note that the prey density N'(i) at
equilibrium increases (decreases) with increasing prevalence in
the case of strong (weak) inter-class competition.

Let us consider the different cases in more detail.

1. The first case arises when the sum of the intra-class competition
coefficients is equal to the sum of the inter-class competition
coefficients, i.e. ¢s + ¢; — cs; — ¢;s = 0. Then the surface I'; does not
depend on i and is parallel to the surface I'p. Note that this
situation is the only possible scenario in the previously studied
special case (5) of an explicit carrying capacity. The intersection
of I'; and I is non-empty if and only if the surfaces coincide,
which requires

mh 1
€ea—m Cg—Cs

In this case, E- is a line of degenerate equilibria which can be
described by the curve

£(i) = (N*,i,P(N", 1))

parametrised by the prevalence i. This case is structurally
unstable and any slight perturbation of the system parameters
will destroy this line of non-trivial equilibria (Hilker and
Malchow, 2006).

2. On the other hand, the two cases satisfying cs+¢; — ¢s; — ;s # 0
can give rise to the existence of a unique non-trivial stationary

solution, which is given by

. mh
T ea-m §
s Ti—(as—cs)N
(cs+c—csp — EIS)NM
P = G(N',i")

Assessing the conditions that lead to either of these two equilibrium
scenarios, it becomes clear that only the second scenario is
biologically relevant. This is because the first case is non-generic in
the context of the general model (9)-(11). For it to occur, two strict
conditions have to be met by the system parameters, which is highly
improbable in a real biological system. Stationary coexistence thus
appears biologically unreasonable in this case and we will not
consider it further. However, it should be noted that non-stationary
coexistence is facilitated in the form of periodic (Hilker and Malchow,
2006) and chaotic attractors (Sieber and Hilker, 2011) over a
considerable parameter range.

3.3. Bistable scenarios

In this section, we investigate the stability of the coexistence
equilibrium. We will see that the emergence of this equilibrium is
associated with the phenomenon of bistability. Two different
forms of bistability are possible: between a diseased-induced
extinction state and either (i) a disease-free state or (ii) a
coexistence state. We will look at the stability conditions for each
of these steady states individually.

Firstly, the most severe outcome of an epidemic is certainly the
disease-induced extinction (D.L.E.) of the entire population. Such
an extinction of the prey population leads inevitably to the
subsequent extinction of the specialist predator P, thereby
eradicating the entire predator-prey community. In the context
of model (9)-(11), this state corresponds to the boundary
equilibrium E;. Its local stability therefore determines whether
disease-induced extinction poses a threat to the predator-prey
community.

Linear stability analysis shows that E; is locally stable whenever

n—u<0<r; (14)

is fulfilled. Recalling that r; denotes the spread rate of the
disease in the prey population while r; — w is the intrinsic
growth rate of the infected subpopulation, the biological
interpretation of this condition becomes clear. The positive
spread rate means that, without any effects counteracting the
advancing disease, a growing fraction of the total population
becomes infected over time. The negative intrinsic growth rate
means that the infected subpopulation is a sink for the
population dynamics, e.g. more infected individuals are re-
moved from the infected class by disease-induced mortality
than are born into it. In combination, this implies that if the
prevalence of the disease reaches some critical threshold, D.LE.
is the inevitable outcome. Note that this condition has also been
derived by Hilker and Malchow (2006).

Secondly, the disease-free (i.e. i = 0) predator-prey equilibrium
Enp is locally stable when it is stable in the well-known predator—
prey subsystem and the additional condition

i< (C]S — Cs)N* (15)

is fulfilled.

Hence, bistability between D.LE. and the disease-free predator-
prey equilibrium occurs when both stability conditions (14) and
(15) hold simultaneously. This happens only if

Cs <Cis. (16)
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Consequently, this rules out the possibility of bistability
between a disease-free system and D.LE. in the explicity
carrying capacity scenario (5). With emergent carrying capacity,
however, both the boundary equilibria E; and Enp can be stable
at the same time.

Fig. 1. Coexistence equilibria occur when all non-trivial nullsurfaces intersect. (a) In
the case of equal inter- and intra-class competition, stationary coexistence is
impossible because two of the nullsurfaces are parallel. (b) and (c) Differential
competition coefficients bend the prevalence nullsurface (shown in dark) to the
right (strong inter-class competition) or to the left (weak inter-class competition),
thus facilitating unique coexistence equilibria.

The particular bifurcation scenario in the regime of bistability
will also depend on the stability of the coexistence equilibrium E-
which in turn depends on the sign of the sum cs + ¢; — ¢s; — ¢js. The
two possible cases are discussed below and we assume that from
now on the D.LE. stability condition (14) is always fulfilled. For the
time being, we also assume that the disease-free equilibrium Epp is
locally stable in the invariant predator-prey subsystem, ruling out
oscillatory behaviour.

3.3.1. Strong inter-class competition

Firstly, we consider the case of strong inter-class competition,
that is ¢s + ¢; < ¢s; + 5. Assuming cs < ¢y, cf. Eq. (16), we will use
the predator mortality m as a bifurcation parameter. The
corresponding bifurcation diagram is shown in Fig. 2a. There is
a one-to-one correspondence between m and the prey density N°
prior to disease introduction, cf. Eq. (13). So increasing m
corresponds to increasing N™ as well and thus shifting the planar
predator nullsurface to the right-hand side.

If the prey density is too low, i.e.

N* <

T %
Cs—Cs N'(0),
the spreading disease will always lead to the extinction of the prey
and subsequently of the predators, since according to the stability
criteria (14) and (15) only the D.LE. state E; is stable.

At N' = N'(0), the coexistence equilibrium E- bifurcates from the
disease-free equilibrium Eyp into the positive octant via a
backward transcritical bifurcation. In this process, E- becomes

in1] 900000000000000000000000000000
B
3 D.LE. Bistability
2
[a®
Backward
ENP transcritical
0
0 Predator mortality m 0.6
] eee0es00000000000000000000008
E;
i DIE. Se Bistability
[} [ ]
g Hopf
2
[a® Forward
transcritical
ENP
0
0 Predator mortality m 0.6

Fig. 2. Sketch of the bifurcation scenarios of the boundary equilibria E;, Exp and the
coexistence equilibrium E- showing the regimes of disease-induced extinction
(D.LE.) and bistability. The predator mortality m as bifurcation parameter is a proxy
for prey density at the disease-free equilibrium. (a) Backward transcritical
bifurcation in the case of strong inter-class competition; (b) forward
transcritical bifurcation in the case of weak intra-class competition. Empty
(filled) circles denote unstable (stable) equilibria. In either case, the coexistence
equilibrium disappears in transcritical bifurcations with the predator-free
equilibrium E;;. Parameter values: (a) rs=1, 11=0, €=0.3, a=4, h=1, 1 =0.05,
rA=14,cs=1,¢=1,¢c5=0.5, cs=2, (b) css=0.25, c;s=1.25, A =1.2.
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unstable and Eyp stable, cf. Fig. 2a. This is where the regime of
bistability begins. The outcome of an epidemic now crucially
depends on the number of initially infected hosts: If too many
hosts are infected in the early stages of an epidemic, disease-
induced extinction is the ultimate outcome (Fig. 3a). By contrast, if
only a few hosts are infected, the epidemic will abate after only a
minor outbreak (Fig. 3b).

The bistability scenario has some interesting implications. All
other things being equal, the parameter range of bistability
increases with the size of the equilibrium prey population N* prior
to infection, since the right-hand side of inequality (15) increases
with N". This means that highly effective predators which depress
their prey to low densities put the whole community at a greater
risk of being eradicated during an epidemic. For the predator this
suggests a trade-off between effectiveness of predation and the
very concrete risk of extinction by an infectious disease of the prey.
This also implies that the risk of a collapsing predator-prey
community is increased when the prey population is diminished
by culling or removal of prey individuals as part of a containment
strategy to control the epidemic.

It is also interesting to note that the scenario of strong inter-
class competition implies that the parasite or pathogen responsible
for the epidemic will always go extinct in the long-run, since the
coexistence equilibrium is always unstable when it exists. Either it
gets deprived of its host by disease-induced extinction, or the
epidemic abates after a small outbreak, in which case the disease-
free predator-prey community persists. As we will investigate
now, this situation changes in the case of weak inter-class
competition.

3.3.2. Weak inter-class competition

Now we assume cs + ¢; > Cs; + Cjs, i.e. weak inter-class compe-
tition. The bifurcation diagram is shown in Fig. 2b. Numerical
simulations indicate that the coexistence equilibrium E- is now

(@) |

05

Densities

0
60 80 100
Time
(c) |
i
3
£ 05
a
60 80 100

Time

typically stable, except for a very small parameter range right
before the equilibrium leaves the positive octant. As a conse-
quence, bistability is now possible between the coexistence
equilibrium and the disease-induced extinction state. That is, the
disease may be able to persist in the long-run (in contrast to the
case of strong inter-class competition). The infection becomes
endemic when the number of initially infected hosts is not too
large, otherwise disease-induced extinction occurs (Fig. 3cand d).
Our model thus predicts that a prerequisite for stable stationary
coexistence of host, parasite and predators in a natural eco-
epidemiological system is weak inter-class competition. And
indeed the experimental system of Bedhomme et al. (2005)
appears to be more of the weak inter-class competition type,
although not far away from equal inter- and intra-class competi-
tion.

The coexistence equilibrium leaves the positive octant at
N =N'(0) via a transcritical bifurcation with the prey only, disease
endemic equilibrium Ep;q. This is where the disease-free equilibri-
um Enp becomes stable (Fig. 2b). In the region beyond this
bifurcation point, the disease again has no chance of establishing
itself in the long-run, the only possible outcomes being disease-
induced extinction or the disease-free predator-prey state.
Numerical bifurcation analysis also suggests that the coexistence
equilibrium undergoes a Hopf bifurcation shortly before it leaves
the positive octant (Fig. 2b). The associated population cycles lead
to the non-stationary coexistence of all three species, but the
parameter range of this case is extremely narrow (data not shown).
However, the possibility of more robust non-stationary coexis-
tence is explored in the next section.

It is also interesting to note that the bifurcation scenario
shown in Fig. 2b implies that when the coexistence equilibrium
exists, an increase in predator mortality will paradoxically
always lead to increased predator densities. This is because the
equilibrium E- is stable for a large parameter range, and its
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Fig. 3. Top row: Bistability between the disease-free predator-prey system and disease-induced extinction in the eco-epidemiological model with strong inter-class
competition. (a) The initial condition with high prevalence (i = 0.2) drives the predator-prey community to extinction. (b) For a lower initial prevalence (i = 0.1) the disease is
not able to spread, and prey and predators persist. Bottom row: Bistability between the coexistence equilibrium and disease-induced extinction in the eco-epidemiological
model with weak inter-class competition. (c) A high initial prevalence (i = 0.5) drives the predator-prey community to extinction. (d) For a lower initial prevalence (i =0.1),
the coexistence equilibrium is approached. Parameters for (a,b) as in Fig. 2a with m = 0.35 and for (c,d) as in Fig. 2b with m = 0.275. Other initial conditions: N=N", P= P-.
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Fig. 4. Hydra effect: increasing predator mean density at the stable endemic
equilibrium E- with increasing predator mortality. After the transcritical bifurcation
with the disease-free equilibrium Enp, the predator mean density decreases again.
Other parameters as in Fig. 3c and d.

predator component P'(N, i) is necessarily an increasing
function of the predator mortality m—at least for intermediate
mortality rates, since it enters the positive octant via a
bifurcation from the equilibrium Ey; with P*(N, i)=0 and it
leaves the positive octant via the mentioned forward transcritical
bifurcation with the disease free-equilibrium Enp with P'(N,
i)=P (N, 0) > 0. The increase in predator density with increasing
predator mortality is shown in Fig. 4. This phenomenon of
a species mean density increasing with its own mortality
has been termed hydra effect (Abrams, 2009). It has been shown
for a wide range of classical predator-prey models that the
condition for the hydra effect to occur is instability of the
predator-prey equilibrium (Sieber and Hilker, 2012). Interest-
ingly, the current results indicate that the presence of disease
facilitates a hydra effect even when the predator-prey equilibri-
um is stable.

3.3.3. Bistability and non-stationary dynamics

Relaxing the assumption that the equilibrium Eyp is stable in
the disease-free predator-prey subsystem tends to facilitate
more complex bifurcation scenarios. In particular, the coexis-
tence equilibrium can undergo a Hopf bifurcation leading to

e
n

Densities

bistability between non-stationary coexistence of all three
species and disease-induced extinction. This is illustrated in
Fig. 5. Our numerical simulations show that the coexistence
limit cycle may also undergo bifurcations to more complex
behaviour such as chaos (not shown here).

4. Discussion and conclusions

We have argued that if competitive abilities differ due to
infection, the explicit carrying capacity modelling approach does
not seem appropriate. Instead, this calls for an emergent carrying
capacity formulation, i.e. using differential competition coeffi-
cients for each of the four possible interactions amongst infected
and susceptible individuals.

The explicit carrying capacity approach, however, has been
used not only in epidemiological models (e.g. Gao and Hethcote,
1992; Courchamp et al., 1995; Barlow, 1996; Hilker, 2009) but
also as the epidemiological skeleton in several eco-epidemiologi-
cal models (Beltrami and Carroll, 1994; Chattopadhyay and
Arino, 1999; Xiao and Chen, 2001; Hethcote et al., 2004; Singh
et al.,, 2004; Malchow et al., 2004; Hilker and Malchow, 2006).
We have therefore proposed and investigated a more general
eco-epidemiological model that may be applied to biological
systems with differential competitiveness in the infected prey
population.

Emergent carrying capacities release the epidemiological
skeleton from the rather restrictive constraints of the explicit
carrying capacity model. In particular, the emergent carrying
capacity model allows for the existence of a unique coexistence
equilibrium, which is not possible in the explicit carrying capacity
model with indiscriminate predation. The observation that the
model with emergent carrying capacity is able to show more
biologically relevant dynamics than the explicit carrying capacity
model is in line with theoretical studies of evolutionary branching
(speciation) in predator-prey models (Bowers et al., 2003; Hoyle
and Bowers, 2007).

The possible occurrence of a unique coexistence equilibrium
and the bistability scenario are of considerable theoretical and
practical interest. While it is known from previous eco-
epidemiological models with explicit carrying capacities that
coexistence is possible when predators discriminate between
prey types, and for example only feed on infected individuals
(Chattopadhyay and Bairagi, 2001), models with indiscriminate
predators have so far led to the conclusion that the dynamics are
of an “all or nothing” type. Either the disease succesfully spreads

(b)

Fig. 5. (a) Coexistence cycle approached for the initial condition N = N', i = 0.1, P = P-, For initial conditions with higher initial prevalence disease-induced extinction occurs. (b)
Phase space with equilibria marked by circles and the orbits of two solutions approaching the disease-induced extinction state and the coexistence limit cycle. Filled circles
denote a stable equilibrium and empty circles denote an unstable equilibrium. Parameters: rs=1,17=0,cs=1,¢c;=1,¢5;= 0.25,¢;s = 1.25,€=0.3,a=2,h=0.1,m=0.48, A = 1.2,

w=0.05.
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displacing the predators and possibly leading to the collapse of
the whole predator-prey community, which is a clearly Pyrrhic
victory for the disease, or the epidemic abates with a subsequent
return to the disease-free state. Only under certain conditions,
namely when the predators are not too dominant and in addition the
predator-prey system is cyclic, non-stationary coexistence is
possible in the explicit carrying capcity model (Hilker and Malchow,
2006; Sieber and Hilker, 2011). Otherwise there is nothing between
adisease-dominated or predator-dominated state, i.e. a competitive
exclusion principle holds and “the winner takes it all” (Siekmann et
al., 2010).

The emergent carrying capacity model, however, paints a
more differentiated picture, with intermediate outcomes be-
coming possible, namely in the form of stationary (as well as
non-stationary) coexistence of all three populations. This can
be associated with bistability, i.e. a critical dependence on
initial conditions and/or external perturbations. This latter
case has profound implications for the control and manage-
ment of infectious diseases, since any overcritical inflow of
additional infected individuals may push the system from the
healthy or endemic state on a trajectory to disease-induced
extinction.

Even more dramatically, well-meant control measures such as
host culling or other forms of removal of prey individuals may lead
to this catastrophic crash of the system. This has been pointed out
in the section on strong inter-class competition, but it holds
equally for weak inter-class competition. Hence, the proposed
general eco-epidemiological model (6)-(8) suggests that healthy
predator-prey ecosystems or those in which a non-critical
endemic disease is present may actually exist on the brink of
disease-induced extinction, even though the dynamics are robust
with respect to small perturbations.

There is yet another implication for the design of wildlife
disease control programs. It has been hypothesised that predator
removal results in more infections of the prey (‘keeping the herds
healthy’ Packer et al., 2003). In contrast to this, our results in the
case of weak inter-class competition suggest that predator removal
(i.e. increasing their mortality m) can simultaneously increase
predator density and decrease infection levels at the coexistence
equilibrium (depending on initial conditions, cf. Figs. 2 and 4).
Hence, predator removal can be doubly beneficial. Our results thus
contradict the ‘keeping the herds healthy’ hypothesis and are in
line with recent similar conclusions (e.g. Morozov and Adamson,
2011; Bate and Hilker, 2013).

In summary, the results presented here appear to challenge
previous studies based on more restrictive assumptions that
may hold only for particular biological systems. This paper
highlights the need of an adequate description of the competi-
tion between healthy and infected subpopulations. As such basic
interactions form part of any epidemiological skeleton that is
embedded in a wider ecosystem context, modelling intraspecific
competition may be crucial for understanding the dynamics of
spreading diseases in food webs.
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