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a b s t r a c t

Fluctuations in population size may have negative consequences (e.g., an increased risk of extinction or
the occurrence of repeated outbreaks), and many management strategies are aimed at avoiding them
by either only restocking or only harvesting the population. Two of these strategies are adaptive limiter
control (ALC) and adaptive threshold harvesting (ATH). With ALC the population is controlled by only
restocking and with ATH by only harvesting. We propose the strategy of combined adaptive limiter
control (CALC) as the combination of ALC and ATH and study the potential advantages of CALC over ALC
and ATH. We consider two different population models, namely a stochastic overcompensatory model
and a host–pathogen–predator model. For the first model, our results show that the combination of
restocking and harvesting under CALC improves the constancy stability of the managed populations
when the harvesting and restocking intensities are high enough. Otherwise the effect is marginal or in
rare cases negative. For the second model, we show that combining harvesting with restocking reduces
the outbreak risk only if the harvesting intensity is low. For medium harvesting intensities the effect
is marginal and for high harvesting intensities the risk of outbreaks is increased. In addition, we study
the optimal harvesting–restocking balance by considering a proxy of the benefit obtained in terms of
the reduction in the outbreak risk and the harvesting and restocking costs.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In the last decades, the concern about the consequences of
population oscillations for ecosystems has grown (Barraquand
et al., 2017). These fluctuations are ubiquitous (Elton, 1924;
Ranta et al., 1998; Lundberg et al., 2000) and have multiple
causes (Royama, 1992; Kendall et al., 1999; Turchin, 2003; Bar-
raquand et al., 2017). Although they may have positive effects,
e.g., increased biodiversity (Armstrong and McGehee, 1980; Huis-
man and Weissing, 1999) or enhanced persistence in metapop-
ulations because of desynchronization (Allen et al., 1993), their
consequences can also be negative, e.g., more variable yield of
exploited populations (Wilson et al., 1990), the occurrence of pest
outbreaks (Dwyer et al., 2004), increased extinction risk (Rosen-
zweig, 1971) or the loss of genetic variability and increased
inbreeding (Bijlsma et al., 2000; Allendorf and Luikart, 2007).

Potential management strategies to deal with population fluc-
tuations have recently come into focus (Barraquand et al., 2017).
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They can be aimed at maintaining oscillations because of their
positive effects but at avoiding some undesirable aspects (Hilker
and Westerhoff, 2007b), or at inducing certain responses at tar-
geted points in time (Hilker and Westerhoff, 2007a). Many man-
agement strategies, however, are concerned with reducing
fluctuations to avoid some of their negative consequences. Two
of these strategies are adaptive limiter control (ALC) and adaptive
threshold harvesting (ATH). ALC supplements the population size
to a certain proportion of its value in the preceding time step,
provided the population size has fallen below this proportion (Sah
et al., 2013). By contrast, ATH culls the population size to another
proportion of its value in the preceding time step, provided
the population size has increased above this proportion (Segura
et al., 2016). ALC has been demonstrated to work in experimental
populations and metapopulations of Drosophila melanogaster (Sah
et al., 2013), and both ALC and ATH have been analytically and
numerically investigated (Franco and Hilker, 2013; Sah et al.,
2013; Franco and Hilker, 2014; Sah and Dey, 2014; Tung et al.,
2014; Segura et al., 2016, 2017). Like ATH and ALC, many other
strategies are aimed at reducing fluctuations in population size
by either exclusively culling or supplementing the population,
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e.g., different harvesting strategies like constant-yield, constant-
effort and threshold harvesting (Fryxell et al., 2005; Sinclair
et al., 2006) or constant (McCallum, 1992; Stone, 1993) and
proportional (Güémez and Matías, 1993) feedback strategies.

The combination of harvesting and restocking has proved use-
ful for the management of many populations, e.g., aqua-cultured
fish (Bell et al., 2006, 2008; Lorenzen, 2008), game species of birds
and mammals (Champagnon et al., 2012), sea urchins (Couvray
et al., 2015) or prawns (Taylor, 2017). Moreover, control strate-
gies that combine the removal and restocking of individuals of
a population have been shown in mathematical models to be
generally very effective, e.g., both limiter control (BLC) (Tung
et al., 2014, 2016a,b) or target-oriented control (TOC) (Dattani
et al., 2011; Franco and Liz, 2013; Tung et al., 2016b; Braverman
and Franco, 2017). These strategies expand the range of choices
for the control and allow the users to achieve management goals
that would not be possible by either only restocking or only
culling the population (Tung et al., 2016b).

When combined, restocking and harvesting can play a cen-
tral role in population management. For instance, in the case of
coastal fisheries (Bell et al., 2006), when the goal is to restock
depleted populations, the release of juveniles should be combined
with large reductions in culling. By contrast, when the goal is
to overcome recruitment limitation, releases may be combined
with relatively high culling efforts. In this paper, we propose a
new management strategy that allows for both restocking and
harvesting by combining ALC and ATH. If the population size
grows beyond a certain proportion, ATH is applied to cull part
of the increase, whereas if the population size declines below an-
other proportion, ALC is applied to restock part of the diminished
population. We will refer to this strategy as combined adaptive
limiter control (CALC).

CALC avoids the state variable becoming too low or too high.
This is somewhat analogous to certain biological processes at the
level of organism homeostasis. One example is the integral rein
control (Saunders et al., 1998), in which glucagon inputs prevent
blood glucose from becoming too low and insulin inputs prevent
blood glucose from becoming too high.

The novelty of CALC with respect to other strategies combining
restocking and harvesting is that it is ‘adaptive’ (like the strategies
ALC and ATH that it combines), given that the magnitude of the
intervention depends on the proportion between the population
sizes in the current and previous generations. This adaptiveness
can have important advantages. One of them is that it allows to
implement the control in cases in which the knowledge of the
underlying dynamics is poor. Moreover, Franco and Hilker (2013)
showed that the intervention magnitude of ALC was lower than
that of lower limiter control (LLC) (Hilker and Westerhoff, 2005)
in their simulations. One might expect that there is a similar
advantage of CALC over BLC.

How to combine harvesting and restocking will depend on
biological, economic and social factors (Lorenzen, 2005, 2008;
Taylor, 2017). In particular, the economic side seems to often play
a central role. For instance, in the case of aqua-cultured fishes, the
cost of hatchery fish can determine the optimal management. At
a high cost, no increase in the total yield and stock abundance is
expected (Lorenzen, 2005). An example of this is the management
of Alaskan pink salmon, which has proved uneconomic under
current conditions (Boyce et al., 1993; Hilborn, 1998). By contrast,
high efforts of both fishing and restocking can be optimal when
the cost is low (Lorenzen, 2005), this being the case for Japanese
chum salmon (Arnason, 2001; Morita et al., 2006). Another ex-
ample of the relevance of the economic aspect is the release of
hatchery-reared sea urchins in wild populations. In that case,
restocking can recover local productivity (Juinio-Menez et al.,
2008a,b), but the high cost of hatchery sea urchins can make the

management uneconomic (Lawrence, 2013; Couvray et al., 2015).
In this paper, in addition to studying the stabilizing effect that
can be attained by the combination of restocking and harvesting
under CALC, we analyze the trade-off between this stabilizing
effect and the cost of the management interventions.

The main goal of this paper is to show in which cases CALC
may be advantageous over ALC and ATH. Since the aim is to re-
duce fluctuations in the population size, we will only consider the
application of these strategies to unstable populations. Optimal
management strategies are commonly determined by optimiz-
ing a single objective function, e.g., the maximum sustainable
yield (Schaefer, 1954; Chapman et al., 1962; Clark, 1976; Steven-
son, 1978) or the maximum economic yield (Anderson, 1975;
Kompas, 2005; Dichmont et al., 2010; Guillen et al., 2013; Reid
et al., 2013). In our case, such an approach would provide specific
values for harvesting and restocking efforts at the optimum but
no information for other values. Contrary to this, our aim is to
provide a more holistic view by studying the behavior of the man-
aged populations for all possible combinations of harvesting and
restocking and for different stability criteria. We are convinced
that adopting such a perspective enriches the analysis. In this
sense, the reader is cautioned to not expect absolute conclusions
about which is the ‘‘best’’ strategy.

In the next section, we describe CALC in mathematical terms
and introduce CALC as a management strategy in different pop-
ulation models. Section 3 studies the effect of CALC on the
constancy stability of a stochastic population with overcompen-
sation. Section 4 analyzes the capability of CALC to prevent out-
breaks of forest-defoliating insects in a stochastic three-species
model. We also consider the economic benefit that would be
obtained by reducing outbreaks depending on both the restocking
and harvesting costs. Section 5 extends the discussion of our
results and draws conclusions.

2. Models and methods

2.1. Combined adaptive limiter control

CALC aims at reducing the fluctuations in population size by
avoiding crashes and outbreaks. Let xt be the population size at
time step t . If xt drops below a certain proportion of its value in
the previous generation (which we denote by c · xt−1, with c ∈

(0, 1)), individuals are restocked to that proportion. We will refer
to c as the restocking intensity, since higher values of c correspond
to higher restocking efforts. If xt exceeds another proportion of
xt−1 (which we denote by xt−1/h, with h ∈ (0, 1)), the population
is harvested to that proportion. Notice that we have denoted the
proportion of xt−1 that determines when individuals are removed
by xt−1/h, with 0 < h < 1, instead of h · xt−1, with h > 1.
This allows us to interpret h as a harvesting intensity, since higher
values of h correspond to lower values of 1/h, and thus to higher
removal efforts. Moreover, both control intensities (c and h) range
in the same interval (0, 1).

The control strategy described above can be seen as the com-
bination of ALC and ATH, both of which are able to reduce the
fluctuations in the population size (Franco and Hilker, 2013; Sah
et al., 2013; Franco and Hilker, 2014; Sah and Dey, 2014; Tung
et al., 2014; Segura et al., 2016, 2017). Fig. 1 illustrates that CALC
shares this property with them. Moreover, CALC is an adaptive
management strategy because the magnitude of the intervention
is nonconstant and depends on the proportion between the pop-
ulation sizes in the current and the previous generation. It differs
from other strategies for which the magnitude of the intervention
is also nonconstant, like proportional feedback, for which a fixed
proportion of the population is harvested or restocked every
generation (Güémez and Matías, 1993). In the case of CALC, no
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Fig. 1. During the first 40 generations the population is uncontrolled and its dynamics are described by the Ricker map f (x) = x exp(r(1 − x/K )) with r = 2.7 and
K = 30. In the next 60 generations, the population is managed by CALC with intensities c = 0.5 and h = 0.6. Black circles (red squares) correspond to the population
size before (after) the control intervention. The horizontal red lines represent the limits of the interval that traps the size of populations managed according to CALC
with the given control intensities (see Eqs. (B.2) and (B.3) in Appendix B.2). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. CALC function (2) in red solid line, for a given map f in dashed line
describing the underlying dynamics. The red area corresponds to the cases
in which the population is harvested, and the blue to those in which it is
restocked. Value d corresponds to the abscissa of the maximum of f , K
is the carrying capacity of the uncontrolled population, and AH and AR are
respectively harvesting and restocking activation thresholds. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

action is taken if the proportion between population sizes in
two consecutive generations is within the stipulated limits c and
1/h.

To further understand the effect of CALC and its relation with
ALC/ATH, assume that the underlying population dynamics, i.e., in
the absence of CALC, are given by

xt+1 = f (xt ), x0 ∈ [0, +∞), t ∈ N, (1)

where f : [0, +∞) → [0, +∞) is a continuously differentiable
hump-shaped production function with two fixed points, namely
(i) the extinction state x = 0 and (ii) a positive equilibrium x = K ,
which corresponds to the carrying capacity of the population.
Many common models with overcompensatory dynamics satisfy
these conditions, e.g., the Ricker (1954), Hassell (1975) and gen-
eralized Beverton–Holt (Bellows, 1981) model. Assuming that the
population is managed by CALC with intensities c, h ∈ (0, 1) after
reproduction has taken place leads to (see Appendix A)

xt+1 = max{min{f (xt ), xt/h}, c · xt}. (2)

We can see CALC as a general framework for adaptive limiters,
including both ALC and ATH as particular cases if we allow the
control parameters to be null. Given that c and h respectively
represent the restocking and harvesting intensities, c = 0 cor-
responds to only harvesting (ATH) and h = 0 to only restocking
(ALC). However, the latter is not well defined in Eq. (2). To
overcome this, we redefine the equation describing CALC with
h = 0 to xt+1 = max{f (xt ), c · xt}. The CALC map for various
production functions is studied in Appendix C.

Fig. 2 shows function (2) with c, h ∈ (0, 1) for a certain map
f describing the underlying dynamics (which is compatible, for
instance, with the Ricker map). The population is harvested when
the population size x is such that the graph of f is strictly above
the straight line y = x/h. Similarly, the population is restocked
when the graph of f is strictly below y = c ·x (cf. Fig. 2). Therefore,
in case the population is controlled, the type of intervention
(harvesting or restocking) depends on the population size in
the previous generation, the control intensities c and h, and the
production function f . It is important to highlight that restocking
and harvesting cannot take place simultaneously at a given time
since c < 1/h. Yet, for certain combinations of control intensities,
the population can be restocked at some time steps and harvested
at other time steps. For the sake of simplicity, we will refer to this
case as the combination of restocking and harvesting throughout
the rest of this paper. Similarly, for certain values of the control
intensities interventions can consist of harvesting only or restock-
ing only. Given a production function f , we can determine for
which control intensities the population will remain uncontrolled
and for which control intensities the interventions used in CALC
will consist of only harvesting, only restocking or a combination
of harvesting and restocking (cf. Fig. 3 and Appendix C).

In Appendix B, we rigorously prove the following two results.
These results also exist in similar form for ALC and ATH (Franco
and Hilker, 2013; Segura et al., 2016), so we show that they
translate to the two-parametric strategy of CALC. First, there are
two activation thresholds AH and AR that respectively allow us
to know in advance about the need of harvesting or restocking
the population in the following time step. More specifically,
harvesting is not necessary if the population size in the preceding
generation was above AH , while restocking only takes place if the
population size in the preceding generation was above AR (cf.
Fig. 2 and Appendix B.1). Second, the stabilizing effect of CALC
is reached by ‘‘trapping’’ the population size in a certain interval
around the carrying capacity, the length of which decreases with
the control intensities (cf. Fig. 1 and Appendix B.2).
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Fig. 3. Type of intervention (restocking, harvesting or a combination of both)
for the production function f represented in Fig. 2 in terms of the control
intensities. Value f (d) is the maximum of the population production, achieved
by populations with size d, and f 2 = f ◦ f . The first generation was omitted for
the determination of the type of intervention in the only restocking area. See
Appendix C for more details.

2.2. Simulations

To study the pros and cons of CALC versus ALC and ATH,
we perform several numerical experiments with two different
population models.

2.2.1. CALC of a stochastic overcompensatory population
The first model is based on the Ricker map and includes

environmental and demographic stochasticity as well as a lattice
effect (Henson et al., 2001). We use the negative-binomial-
environmental (NBe) model introduced by Melbourne and Hast-
ings (2008). This model reads xt+1 ∼ NegBinom(f (xt ), α), where
NegBinom denotes the negative-binomial distribution, f is the
deterministic production function of the population and α is a
parameter driving the shape of the distribution. Specifically, we
consider for numerical simulations the equation

xt+1 =

{
max{min{zt , xt/h}, c · xt}, h > 0,
max{zt , c · xt}, h = 0,

(3)

with zt ∼ NegBinom(xt exp(2.7(1 − xt/30)), 100) and (c, h) ∈

[0, 1)×[0, 1). This describes the dynamics of a population subject
to both demographic and environmental stochasticity that is
managed by CALC with restocking intensity c and harvesting
intensity h, and for which the uncontrolled deterministic dynam-
ics are described by the Ricker model with growth parameter
r = 2.7 and carrying capacity K = 30. Moreover, the discrete
character of the statistical distribution that is considered implies
the integerization of population size. Note that Eq. (3) does not
account for measurement error in the population census.

With this equation, we study the effect of CALC on the con-
stancy stability of managed populations, which refers to the
propensity of the population size to remain essentially unchanged
(Grimm and Wissel, 1997). It has been previously reported that
the effect of management strategies can sometimes be stabiliz-
ing or destabilizing depending on which constancy measure is
used (see, for example, Segura et al., 2016). In this sense, it is
important to rely not just on one measure, because this could
give results that do not hold for other measures. In view of this,
we consider three different measures of the constancy stability,

namely the fluctuation index (FI), the fluctuation range (FR) and
the coefficient of variation (CV). The FI is a dimensionless measure
of the average one-step variation of the population size scaled by
the average population size in a certain period. It was introduced
by Dey and Joshi (2006) and employed by Franco and Hilker
(2013) and Sah et al. (2013) to study stability properties of ALC
and by Segura et al. (2016) to study stability properties of ATH.
Mathematically, the FI is given by

FI =
1
Tx

T−1∑
t=0

|xt+1 − xt | , (4)

where x is the mean population size over a period of T time steps.
The FR is the difference between the maximum and minimum
population sizes over a period of T time steps. Finally, the CV
is a standardized measure of the dispersion in the population
size obtained as the ratio of the standard deviation to the mean
of the population size over a period of T time steps. Constancy
stability of a population is inversely related to the magnitude of
fluctuation in size it shows across time. Thus, decreases in any
of these three measures are associated with enhancements in the
constancy stability.

Given a combination of control intensities (c, h), we evaluate
the above three measures for Eq. (3) averaged over series of
T = 30 time steps and over 500 replicates with random initial
conditions in (0,M], where M is the maximum population pro-
duction. To study the statistical significance of the differences in
the considered measures, we conduct t-tests for the comparison
of their means for different combinations of control intensities.
We focus on the differences between the cases in which the
populations are managed by harvesting only (c = 0) or restocking
only (h = 0) and the cases in which they are managed by a certain
combination of harvesting and restocking (c, h ̸= 0). Given
a constancy measure m ∈ {FR, FI, CV} and a fixed harvesting
intensity h = h0, we denote by ph=h0 (c) the p-value of the
t-test for the comparison of means of m between the case in
which the population is managed with control intensities (0, h0)
and the case in which it is managed with control intensities
(c, h0). Similarly, for a fixed restocking intensity c = c0, we
denote by pc=c0 (h) the p-value for the comparison of means of m
between the cases given by control intensities (c0, 0) and (c0, h).
The significance level is set at 0.05 and all statistical analyses are
performed with IBM R⃝ SPSS Statistics 23 for Windows R⃝.

2.2.2. CALC of a host–pathogen–predator model
The second model to be considered was introduced by Dwyer

et al. (2004) and used by Segura et al. (2017) to study the
effectiveness of ALC and ATH in the prevention of population out-
breaks. This model incorporates the effect of generalist predators
(i.e., as a constant parameter) in a classical host–pathogen system
and its non-dimensionalized stochastic version reads

1 − I(xt , zt ) =

(
1 +

1
k
(xt I(xt , zt ) + zt )

)−k

,

xt+1 = λxt (1 − I(xt , zt ))
(
1 −

2ABxt
B2 + x2t

)
εt , (5)

zt+1 = φxt I(xt , zt ),

where the two variables xt and zt represent the host and pathogen
densities in generation t , respectively. Given these densities,
I(xt , zt ) is the fraction of infected hosts. The term εt introduces
stochasticity and is a log-normal random variable with median 1.
Parameter λ represents the net host fecundity, φ is the between-
season impact of the pathogen, A is the maximum fraction of
hosts killed by the predator, B is the ratio of the density at
maximum predation to the epidemic threshold and k is the
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inverse squared coefficient of variation of the transmission rates,
which follows a gamma distribution. Parameter values have been
estimated for populations of the gypsy moth Lymantria dispar as
the host (defoliator) and a baculovirus as the pathogen, yielding
λ = 74.6, φ = 20, A = 0.967, B = 0.14, and k = 1.06 (Dwyer
et al., 2004). For these values, the deterministic model has three
equilibria with high, intermediate and low defoliator densities.
The high-density equilibrium is unstable and induces an oscil-
latory attractor, and on this attractor the defoliator is regulated
by the pathogen while the predator is relatively unimportant.
The intermediate-density equilibrium is also unstable. Finally, the
low-density equilibrium is stable and the defoliator is regulated
by the predators, with the influence of the pathogen being fairly
irrelevant. The inclusion of stochasticity makes the defoliator
density move unpredictably among attractors and induces high
variability in the time between insect outbreaks.

Here, we consider management actions of the state variable
xt only. Then, the model including CALC with control intensities
(c, h) ∈ [0, 1) × [0, 1) is obtained by modifying the second
equation of (5) to

xt+1 =

{
max {min {J(λ, A, B, xt , zt ), xt/h} , c · xt} εt , h > 0,

max {J(λ, A, B, xt , zt ), c · xt} εt , h = 0,

where J(λ, A, B, x, z) := λx(1 − I(x, z))
(
1 −

2ABx
B2+x2

)
.

With this equation, we calculate the probability of defoliator
outbreaks as follows. We assume that the system is in the basin
of attraction of the low-density attractor of (5), namely x0 =

0.2516 and z0 = 11.6420. The maximum defoliator density for
the deterministic attractors of (5) is approximately 44, and we
will assume that an outbreak happens in generation t when the
defoliator density xt exceeds 35. The probability of these events
is calculated for time series of length 50 and averaged over 5000
replicates.

3. Constancy stability

In this section, we study if the combination of restocking
and harvesting can bring any benefit in terms of the constancy
stability of populations managed by CALC compared to the cases
of harvesting only and restocking only. We consider stochastic
overcompensatory populations that are modeled by (3) in two
different scenarios.

3.1. Scenario 1: adding restocking to harvesting

In this subsection, we study if the addition of restocking to
harvesting reduces the FI, FR or CV of the managed populations.
Let us start by studying the FR. As can be observed in Fig. 4a, for
h ≲ 0.45 the FR decreases as the restocking intensity increases,
while for higher values of h such a reduction is not observed
for low restocking intensities (c = 0.1). This suggests that for
a given harvesting intensity the addition of restocking entails a
significant reduction in the FR only if the restocking intensity
is above a certain threshold. We will see that the same is true
for both the FI and the CV. In view of this and for easy refer-
ence, we denote by cm(h) the restocking intensity threshold that
must be exceeded for a given harvesting intensity h to obtain a
significant reduction in the constancy measure m ∈ {FR, FI, CV}

with respect to the case of only harvesting (c = 0). The term
‘‘significant’’ is used here following statistical criteria (for more
details, see Section 2). Table 1 shows the statistical analysis of the
aforementioned differences in the constancy measures and lists
the values of cm(h) for different harvesting intensities within the
ranges considered throughout this study (for other values in these
ranges similar results were obtained, but they are not shown

here). Table 1 confirms that for h ≲ 0.45 and with respect to
the case of only harvesting the reduction in the FR obtained with
the inclusion of restocking is statistically significant even if the
restocking intensity is very low, so that in this case cFR(h) ≤ 0.1.
For higher values of h, reductions in the FR are only significant for
higher restocking intensities since in this case cFR(h) ∈ (0.1, 0.4].

Let us now consider the FI. Fig. 4b shows that for harvesting of
low intensity h ≲ 0.15 the addition of restocking of low intensity
(c = 0.1) increases the FI. For harvesting intensities 0.15 ≲ h ≲
0.3, the inclusion of restocking significantly reduces the FI even
for very low restocking intensities (cFI(h) ≤ 0.1; see Fig. 4b and
Table 1). For 0.3 ≲ h ≲ 0.9, significant reductions in the FI are
only reached at higher restocking intensities (cFI(h) ∈ (0.1, 0.4];
see Fig. 4b and Table 1). For very high harvesting intensities h ≳
0.9, significant reductions in the FI are again observed from very
low restocking intensities onward (cFI(h) ≤ 0.1; see Fig. 4b and
Table 1).

Finally, let us study the CV. For h ≲ 0.85, the behavior of this
measure is similar to the one observed for the FR (see Fig. 4c
and Table 1). Above this range, increasing the harvesting intensity
increases the CV for populations managed by only harvesting.
Interestingly, the inclusion of restocking nullifies this effect from
low restocking intensities onward.

3.2. Scenario 2: adding harvesting to restocking

Now we study the same measures of constancy stability in the
case in which harvesting is added to restocking. As in the previous
scenario, significant reductions in the FR, FI or CV are reached
only when the harvesting intensity is above a certain threshold
hm(c), which depends on the constancy measure m ∈ {FR, FI, CV}

and the restocking intensity c (see Fig. 4d–f and Table 1). Yet, the
behavior of the three constancy measures is in this case similar—
cutbacks in any of them due to the inclusion of harvesting require
higher harvesting intensities for higher restocking intensities.

In summary, the combination of harvesting and restocking
enhances the constancy stability of the managed populations in
comparison to the cases of restocking only or harvesting only
whenever the control intensities are high enough. This is further
supported by the two-parameter diagrams in Fig. 4g–i, where we
vary both restocking and harvesting intensities. Here we can ob-
serve that if c (respectively h) is large enough, all three constancy
stability measures are enhanced in comparison to the absence of
restocking (respectively harvesting) for all h (respectively c).

4. Population outbreaks

In this section we study the capability of CALC to prevent
outbreaks in the population size. Moreover, we analyze the trade-
off between the reduction in the risk of population outbreaks
and the cost of the intervention. We consider the host–pathogen–
predator model (5).

4.1. Outbreak risk

Population outbreaks are inherent to forest-defoliating insects,
for which the population size may rest in a low-density state for
several generations until some perturbation makes it burst to a
higher-density attractor. Usually, management strategies aimed
at avoiding pest outbreaks are based on only harvesting the
population. In this section, we study if in the case of CALC the
combination of such strategies with restocking may enhance the
capability of the control to contain the population size. Specifi-
cally, we study the effect of CALC on the probability of outbreak
for model (5). The results are shown in Fig. 5a–b. For low har-
vesting intensities (h ≲ 0.3) restocking defoliators reduces the
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Fig. 4. Constancy stability measures for the stochastic overcompensatory population model (3) for varying harvesting and restocking intensities (h and c , respectively).
All values were obtained for time series of length 30 and averaged over 500 replicates (a–f) or 200 replicates (g–i) for which the population persisted. The initial
population sizes were chosen as pseudo-random real numbers in (0,M], where M is the maximum population production.

probability of outbreaks whenever the restocking intensity is not
too high (c ≲ 0.8). Therefore, in that case harvesting and restock-
ing defoliators is more effective for the prevention of outbreaks
than the strategy based only on their removal. Yet, this is not
always the case. For medium and high harvesting intensities (h ≳

0.3), restocking defoliators is never beneficial for the prevention
of outbreaks in their population density. Interestingly, which
is also somehow counter-intuitive, for high removal intensities
restocking even a small proportion of the density of defoliators in
the previous generation promotes outbreaks in their population.
A potential explanation for this behavior lies in the fact that
new uninfected defoliators would be added and a large number
of infected defoliators would be removed from the defoliator
population at high harvesting intensities, which could be highly
destabilizing.

In summary, if we can manage the defoliator with only a low
harvesting intensity, then it is beneficial to combine harvesting
with restocking. On the contrary, if we are able to implement
harvesting with a high intensity, then it seems better to not
restock the defoliator.

4.2. Intervention cost

The previous analysis does not take into account that inter-
ventions always have a cost. In this sense, from a management
perspective, the control strategies that are the most effective at
reaching a specific goal may not be the best option if they come
at a higher cost. Thus, a trade-off between the goals that are
reached and the cost of the intervention must be considered.
Here, we study the benefit that is obtained with CALC in terms
of the reduction of the risk of outbreaks. Undoubtedly, this is an
extremely ambiguous concept that requires the monetarization
of both the goal that is reached and the cost of the intervention,
which could be done in many different ways. We consider a
proxy in which the cost is measured in terms of the restocking
and harvesting frequencies. In the following analysis we consider
that management has a fixed ‘‘budget’’ for control interventions,
which can be partitioned into harvesting and restocking. The sum
of harvesting and restocking intensities is thus constant—here
we assume c + h = 1. With c = λ and h = 1 − λ, where
λ ∈ [0, 1], we see that λ = 0 means only harvesting, λ = 1
only restocking and intermediate values some combination. We
therefore refer to λ as the harvesting–restocking balance. Note
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Table 1
Statistical analysis of the differences in the fluctuation index (FI), fluctuation range (FR) and coefficient of variation
(CV) of the stochastic overcompensatory population model (3) in the two different scenarios and for various
combinations of control intensities. See Section 2 for more details.
Scenario 1: adding restocking to harvesting

h p-values Restocking intensity threshold

h = 0.21
FR ph=0.21(0.1) ≈ 0* cFR(0.21) ≤ 0.1
FI ph=0.21(0.1) ≈ 0* cFI(0.21) ≤ 0.1
CV ph=0.21(0.1) ≈ 0* cCV(0.21) ≤ 0.1

h = 0.51
FR ph=0.51(0.1) = 0.572, ph=0.51(0.4) ≈ 0* cFR(0.51) ∈ (0.1, 0.4]
FI ph=0.51(0.1) = 0.881, ph=0.51(0.4) ≈ 0* cFI(0.51) ∈ (0.1, 0.4]
CV ph=0.51(0.1) = 0.018* cCV(0.51) ≤ 0.1

h = 0.75
FR ph=0.75(0.1) = 0.676, ph=0.75(0.4) ≈ 0* cFR(0.75) ∈ (0.1, 0.4]
FI ph=0.75(0.1) = 0.426, ph=0.75(0.4) ≈ 0* cFI(0.75) ∈ (0.1, 0.4]
CV ph=0.75(0.1) = 0.143, ph=0.75(0.4) ≈ 0* cCV(0.75) ∈ (0.1, 0.4]

h = 0.84
FR ph=0.84(0.1) = 0.668, ph=0.84(0.4) ≈ 0* cFR(0.84) ∈ (0.1, 0.4]
FI ph=0.84(0.1) = 0.939, ph=0.84(0.4) ≈ 0* cFI(0.84) ∈ (0.1, 0.4]
CV ph=0.84(0.1) = 0.215, ph=0.84(0.4) ≈ 0* cCV(0.84) ∈ (0.1, 0.4]

h = 0.93
FR ph=0.93(0.1) = 0.201, ph=0.93(0.4) ≈ 0* cFR(0.93) ∈ (0.1, 0.4]
FI ph=0.93(0.1) = 0.024* cFI(0.93) ≤ 0.1
CV ph=0.93(0.1) = 0.014* cCV(0.93) ≤ 0.1

Scenario 2: adding harvesting to restocking

c p-values Harvesting intensity threshold

c = 0.21
FR pc=0.21(0.1) = 0.550, pc=0.21(0.25) ≈ 0* hFR(0.21) ∈ (0.1, 0.25]
FI pc=0.21(0.1) = 0.787, pc=0.21(0.25) ≈ 0* hFI(0.21) ∈ (0.1, 0.25]
CV pc=0.21(0.1) = 0.543, pc=0.21(0.25) ≈ 0* hCV(0.21) ∈ (0.1, 0.25]

c = 0.51
FR pc=0.51(0.1) = 0.839, pc=0.51(0.25) = 0.005* hFR(0.51) ∈ (0.1, 0.25]
FI pc=0.51(0.25) = 0.497, pc=0.51(0.4) ≈ 0* hFI(0.51) ∈ (0.25, 0.4]
CV pc=0.51(0.25) = 0.403, pc=0.51(0.4) ≈ 0* hCV(0.51) ∈ (0.25, 0.4]

c = 0.75
FR pc=0.75(0.25) = 0.550, pc=0.75(0.4) ≈ 0* hFR(0.75) ∈ (0.25, 0.4]
FI pc=0.75(0.25) = 0.195, pc=0.75(0.4) =≈ 0* hFI(0.75) ∈ (0.25, 0.4]
CV pc=0.75(0.25) = 0.972, pc=0.75(0.4) ≈ 0* hCV(0.75) ∈ (0.25, 0.4]

c = 0.84
FR pc=0.84(0.25) = 0.874, c=0.84(0.4) ≈ 0* hFR(0.84) ∈ (0.25, 0.4]
FI pc=0.84(0.4) = 0.092, pc=0.84(0.7) ≈ 0* hFI(0.84) ∈ (0.4, 0.7]
CV pc=0.84(0.25) = 0.306, pc=0.84(0.4) = 0.032* hCV(0.84) ∈ (0.25, 0.4]

c = 0.93
FR pc=0.93(0.4) = 0.145, pc=0.93(0.7) ≈ 0* hFR(0.93) ∈ (0.4, 0.7]
FI pc=0.93(0.4) = 0.681, pc=0.93(0.7) ≈ 0* hFI(0.93) ∈ (0.4, 0.7]
CV pc=0.93(0.4) = 0.729, pc=0.93(0.7) = 0.019* hCV(0.93) ∈ (0.4, 0.7]

*Statistically significant at level 0.05.

that due to this assumption we have reduced the number of
free control parameters from two to one, which simplifies the
analysis.

Under the above assumption, we consider the function

B(λ, v1, v2, v3) = v1(Pu − Pc(λ))  
revenue

− (v2 · FR(λ) + v3 · FH (λ))  
cost

, (6)

where B is the benefit function and Pu, Pc(λ), FR(λ) and FH (λ)
respectively represent the probability of outbreak for the un-
controlled and controlled populations and the restocking and
harvesting intervention frequencies of CALC for control intensities
c = λ and h = 1 − λ, with λ ∈ [0, 1]. Parameter v1 represents
the unitary revenue that corresponds to the monetarization of the
reduction in the probability of outbreak, while v2 and v3 repre-
sent the unitary cost of harvesting and restocking interventions,
respectively.

We rescale (6) by setting v1 = 1. Our goal is to study which
combination of parameters yields the maximum benefit, which
naturally depends on which type of intervention (restocking or
harvesting) is more costly. In this sense, we can set v2 at a fixed
value (for instance, v2 = 1) and study the benefit for v3 > 1
(harvesting more costly than restocking), v3 = 1 (harvesting and
restocking equally costly) and v3 < 1 (restocking more costly
than harvesting). For these values, Fig. 6 shows the graphical
representation of (6) in terms of λ for different values of v3. When
harvesting is less costly than restocking (v3 = 1/4), the maximum
benefit is reached when the harvesting intensity is higher than
the restocking intensity (λ < 0.5). As the cost of harvesting

increases, the peak of the benefit curve moves to the right, which
means increasing the restocking intensity and decreasing the
harvesting intensity. When restocking and harvesting are equally
costly (v3 = 1), the maximum benefit is reached when the two
control intensities are approximately equal, i.e., λ ≈ 0.5. Finally,
when harvesting is more costly than restocking the maximum
benefit is reached for a restocking intensity higher than the
harvesting intensity (v3 = 4). The same behavior is observed
when v2 is set at other values different from 1 (not shown here).

As already mentioned, similar analyses could be performed by
considering different criteria for the definition of the benefit of
the intervention. A similar analysis could also be performed for
model (3) by considering the trade-off between the reduction in
either the FI, FR or CV and the intervention costs. The example
considered here does not pretend to be representative of all of
them, but shows that choosing the values of the control intensi-
ties depends on the formulation of the cost function, and in the
cases considered here the intervention costs play a role.

5. Discussion and conclusions

We have introduced CALC as a strategy for the management of
biological populations that combines restocking and harvesting
according to two already known techniques, namely ALC and
ATH. This new strategy has not been previously considered in
the literature and constitutes a general framework for adaptive
limiters, since it includes the existing methods ALC and ATH as
particular cases.
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Fig. 5. Probability of insect outbreak for the host–pathogen–predator model
(5). The initial conditions for defoliator and pathogen are x0 = 0.2516 and
z0 = 11.6420, respectively. Outbreaks are assumed to occur when the defo-
liator density exceeds 35, and their probability is calculated by estimating the
frequency of their occurrence in time series of length 50 over 5000 replicates.

The main goal of this paper has been to study the advantages
that combining restocking and harvesting may have over restock-
ing only and harvesting only. To that end, we have considered
two different population models. The first is a stochastic over-
compensatory model, for which we have analyzed the constancy
stability of the managed populations by considering three differ-
ent measures of this property, namely the fluctuation index, the
fluctuation range and the coefficient of variation. In our case, all
these measures showed the same trend: the constancy stability
of the managed populations is improved when harvesting and
restocking are combined, provided the harvesting and restocking
intensities are high enough. More specifically, complementing
restocking (respectively harvesting) with harvesting (respectively
restocking) enhances the constancy stability of the managed pop-
ulations if the harvesting (respectively restocking) intensity is
above a certain critical value, which depends on the constancy
measure and the restocking (respectively harvesting) intensity
that are considered. Below this critical value, the impact of com-
bining restocking and harvesting on the constancy stability is in
most cases negligible and in rare cases negative. The latter is the

Fig. 6. Graphical representation of the benefit of managing the host–pathogen–
predator system by CALC, as given by (6), in terms of the restocking–harvesting
balance λ, with c = λ, h = 1 − λ and λ ∈ [0, 1]. For all curves, v1 and v2 are
set at 1. Parameter v3 represents the proportion of the cost of harvesting to the
cost of restocking. The vertical dashed line corresponds to λ = 0.5.

case of the FI, whose value can be increased by the combination
of harvesting and restocking when the intensities of each are
low. Such a behavior in the FI for low intensities was previously
reported for both ALC (Franco and Hilker, 2013) and ATH (Se-
gura et al., 2016). Interestingly, contrary to other methods that
combine harvesting and restocking like BLC or TOC (Tung et al.,
2016b), the improvement in the constancy stability obtained by
that combination is in the case of CALC observed for relatively low
control intensities (cf. Fig. 4 and Table 1). This case is especially
interesting because achieving high control intensities may be
unfeasible due to the cost of the intervention, to logistical issues
or to the unavailability of a high number of individuals to be
restocked.

When the goal is to prevent outbreaks in the population size,
we have shown that combining harvesting with restocking under
CALC can also be beneficial. Yet, again, this depends on the control
intensities. If outbreaks are to be controlled by harvesting of low
intensity (h ≲ 0.3), combining this strategy with restocking of not
very high intensity (c ≲ 0.8) helps to contain the population size.
On the contrary, if outbreaks are to be controlled by harvesting
of intermediate or high intensity (h ≳ 0.3), restocking individuals
with any intensity is either ineffective or counterproductive. Spe-
cial care must be taken in the case of harvesting of high intensity
(h ≳ 0.8), for which the combination with restocking, even of
very low intensity, clearly promotes population outbreaks. We
wish to stress that we are not aware of an example where pest
species have been actually restocked in the field and that we
would expect resistance to this approach in real applications. We
only know of the laboratory experiments in Tung et al. (2016b).

As a method that combines ATH and ALC, the stabilizing prop-
erties of CALC could be expected to be similar to those already
observed separately for ATH and ALC. In fact, we have extended
the stability results for ATH and ALC to CALC (Appendix B.2).
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We have shown that for unimodal maps the stabilizing effect of
CALC is attained by asymptotically trapping the population size
in an interval around the carrying capacity of the population.
We have provided analytical expressions for the endpoints of
this interval in terms of the harvesting and restocking intensities.
Moreover, we have shown that when CALC combines restocking
and harvesting with high enough intensities there exist activation
thresholds that inform us in advance of the need of intervention
in the following time step.

Several papers put forward the idea that the advantage of
combining restocking and harvesting depends on multiple factors,
especially on the economic side (Bell et al., 2006, 2008; Lorenzen,
2005, 2008). With a particular example, we have studied the
trade-off between the stabilizing goals that are reached with
the application of CALC and the cost of the intervention. This
allows us to conclude that the decision about appropriate con-
trol intensities for CALC cannot be exclusively based on stability
criteria. In this sense, we draw attention to the fact that we
should not only focus on theoretical or numerical results pre-
dicting a certain stabilizing effect, but on the benefit that is
expected to be obtained with the intervention. While allowing
us to conclude that the decision about the ‘‘best’’ combination of
control intensities is not trivial, our approach is very simplistic.
For instance, in coastal fisheries, there is great controversy about
the appropriateness of combining fishing and restocking. It is
known that few restocking or stock enhancement programmes
have succeeded because many other aspects different from sta-
bility issues have not been taken into account, as can be the
necessity of the intervention or the integration of technology with
the participation and understanding of the stakeholders by means
of an appropriate management scheme (Bell et al., 2006).
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Appendix A. Modeling CALC

Assume that bt denotes the population size at time step t
before the control intervention and at the population size after
intervention. The dynamics of populations subject to CALC are
given by the equations

bt+1 = f (at ),

at+1 =

⎧⎨⎩
c · at , bt+1 < c · at ,
bt+1, c · at ≤ bt+1 ≤ at/h,
at/h, bt+1 > at/h,

(A.1)

where f is the production function or stock–recruitment curve
of the uncontrolled population, and c, h ∈ (0, 1) are the re-
stocking and harvesting intensities, respectively. Substituting the
value of bt+1 into the second equation of (A.1), the dynamics

of populations subject to CALC are described by the piecewise
one-dimensional difference equation

at+1 =

⎧⎨⎩
c · at , f (at ) < c · at ,
f (at ), c · at ≤ f (at ) ≤ at/h,
at/h, f (at ) > at/h,

which can be rewritten in a single line as

at+1 = max{min{f (at ), at/h}, c · at}. (A.2)

Appendix B. CALC of unimodal maps

Both ALC and ATH were originally stated and investigated for
unimodal maps. In this section, we extend the theoretical results
about their effect on the population stability to the case of CALC.

The unimodal maps that we consider are described by the
following conditions:

(C1) f : [0, b] → [0, b] (b = ∞ is allowed) is continuously
differentiable and such that f (x) > 0 for all x ∈ (0, b) and
f ′(0+), f ′(b−) ∈ R.

(C2) f has two non-negative fixed points x = 0 and x = K > 0,
with f (x) > x for 0 < x < K and f (x) < x for x > K .

(C3) f has a unique critical point d ∈ (0, K ) in such a way that
M = f (d) ≤ b, f ′(x) > 0 for all x ∈ (0, d) and f ′(x) < 0 for
all x ∈ (d, b).

Remark 1. The above conditions are standard in the literature
to describe unimodal maps and were also used in the study of
the stabilizing properties of both ALC (Franco and Hilker, 2013)
and ATH (Segura et al., 2016). We want to stress that imposing
differentiability facilitates the description of these maps, but it is
not a necessary condition in most of the results about ALC, ATH
or in those that follow for CALC whenever the unimodal character
of the map is not altered.

B.1. Activation thresholds

Given the adaptive character of CALC, managers implementing
this control method are supposed to wait until measurements of
the population size have been taken to conclude about the need
of the intervention. However, depending on the shape of the map
that describes the underlying dynamics the control may induce
activation thresholds in the controlled population that allow one
to predict the need of intervention in the following generation.
This is the case for maps satisfying (C1)–(C3). For these maps, the
activation threshold of harvesting (which we denote by AH ) exists
for h > infx∈(0,b) x/f (x) and corresponds to the abscissa of the
leftmost nonzero intersection of the curve y = f (x) and y = x/h.
No harvesting will be necessary in generation t if the population
size in the preceding generation is above AH (Segura et al., 2016).
Moreover, if f is concave downward in (0, d) (which is true for
many unimodal maps, e.g., Ricker) the population is culled in
generation t if its size in the previous generation was below
AH (cf. Fig. 2). Similarly, the activation threshold for restocking
(which we denote by AR) exists for c > f (b)/b and corresponds
to the abscissa of the unique nonzero intersection of the curve
y = f (x) and y = c · x. Restocking only takes place if AR was
exceeded in the preceding generation (Franco and Hilker, 2013).
Given that c < 1 < 1/h, when both AH and AR exist they are
always different and satisfy AH < K < AR (cf. Fig. 2).

The determination of AR and AH for a given combination of
control parameters requires knowing the production function of
the uncontrolled population, which can be obtained from fitting
to time series data. It should be noticed that in the case of
lack of information about the system or in presence of very
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Fig. B.1. Bifurcation diagram of (2) with c = 0.6 and varying h. The underlying
population dynamics are given by the Ricker map f (x) = x exp(r(1 − x/K ))
with r = 2.7 and K = 30. Initial population sizes were obtained as pseudo-
random real numbers in the interval (0,M]. For each initial condition, black dots
represent 30 generations of the population subject to CALC after a transient of
10,000 time steps. Red crosses correspond to the limits of the trapping region
given by Proposition 2.

strong noise this determination can be difficult. However, for
deterministic systems, the knowledge of these thresholds helps
managers to know early on if an intervention is necessary in the
next generation.

B.2. Trapping interval

The following results summarize the stabilizing properties of
CALC. We start by proving that the effect of the control does not
stabilize any equilibrium point.

Proposition 1. Assume that (C1)–(C3) hold and that the carrying
capacity K is an unstable equilibrium of the uncontrolled system.
Then, independent of the magnitude of CALC, (c, h) ∈ [0, 1)×[0, 1),
the controlled system has no asymptotically stable equilibria.

Proof. Denote h0 = infx∈(0,b) x/f (x). For (c, h) ∈ [0, f (b)/b] ×

(h0, 1), restocking is never activated and the control corresponds
to ATH, which has no asymptotically stable equilibria (Segura
et al., 2016, Proposition 2). The same is true for (c, h) ∈ (f (b)/b, 1)
× [0, h0], in which case harvesting is never activated and the
control corresponds to ALC (Franco and Hilker, 2013, Proposition
2). For the remaining control intensities, (c, h) ∈ (f (b)/b, 1) ×

(h0, 1), CALC combines both restocking and harvesting. Clearly,
(x, y) ∈ [0, b] × [0, b] is an equilibrium of the controlled system
(A.1) if and only if{
x = f (y),
y = max{min{x, y/h}, c · y}.

(B.1)

Since c, h < 1, the second equation of (B.1) yields y = x, and thus
y = f (y). Therefore, the controlled system (A.1) only has (0, 0)
and (K , K ) as equilibrium points. According to Segura et al. (2016,
Proposition 1), for h > h0 the activation threshold AH exists.
Consider the neighborhood of (0, 0) given by U = (0, AH )×(0, AH )
and assume that (at , bt ) ∈ U for all t ≥ 0. Given that f (x) > x/h
for x ∈ (0, AH ), at+1 = max{at/h, c · at} = at/h for all t ≥ 0, and
thus at = (1/h)t · x0. Consequently, at → +∞, which contradicts
the hypothesis and proves that (0, 0) is unstable.

Let us now prove that (K , K ) is also unstable. Since f is con-
tinuous and c ·K < K = f (K ) < K/h, there exists a neighborhood

V of K such that c · x < f (x) < x/h for all x ∈ V . Assume that
(at , bt ) ∈ V × V for all t ≥ 0. Then, at+1 = f (at ) for all t ≥ 0,
and thus at = f t (x0). Since K is an unstable equilibrium for the
uncontrolled system, this last equality contradicts the hypothesis
and proves that (K , K ) is unstable. □

The following result shows that the stabilizing effect of CALC
is attained by asymptotically trapping the population size within
an interval around the carrying capacity. Moreover, it provides
analytical expressions in terms of the control parameters for the
endpoints of this interval, which are shown in Fig. B.1 together
with a bifurcation diagram.

Proposition 2. Assume that (C1)–(C3) hold and (c, h) ∈ (0, 1) ×

(0, 1) are such that the activation thresholds AR and AH exist. Then,
applying CALC with intensities (c, h) asymptotically confines the
population sizes at for any a0 ∈ (0, b) within an interval Ia =

[l(c, h), u(c, h)] around the positive equilibrium K, with endpoints
given by the expressions

l(c, h) =

{
max{c · AR, f (AH/h)}, d ≤ AH ,

max{f 2(d), c · AR}, d > AH ,
(B.2)

u(c, h) =

⎧⎪⎪⎨⎪⎪⎩
min{f (c · AR), AH/h}, d ≤ c · AR, d ≤ AH ,

AH/h, d > c · AR, d ≤ AH ,

f (c · AR), d ≤ c · AR, d > AH ,

f (d), d > c · AR, d > AH .

(B.3)

Proof. Eq. (2) can be expressed as at+1 = max{FH (at ), c · at},
where FH : [0, b] → [0, b] is given by FH (x) = max{f (x), x/h}.
Thus, (2) can be considered as a system describing the dynamics
of a population with production function FH that is controlled by
only restocking (ALC). One can check that FH satisfies conditions
(C1)–(C3) except for the existence of a point where this map is
not differentiable. This does not affect our conclusion since the
existence of such a point does not alter the unimodal character
of the map. Moreover, one can check that there exists T0 > 0 such
that F 2

H (dH ) ≤ at ≤ FH (dH ) for all t ≥ T0, where dH denotes the
abscissa of the maximum of FH . This, together with Franco and
Hilker (2013, Theorem 1), leads to conclude that there exists T ≥

T0 such that for t ≥ T the population size at for any a0 ∈ (0, b)
is asymptotically trapped within an interval Ia = [l(c, h), u(c, h)]
with endpoints given by the expressions

l(c, h) = max{F 2
H (dH ), c · AR}, (B.4)

u(c, h) =

{
FH (c · AR), dH ≤ c · AR,

FH (dH ), dH > c · AR.
(B.5)

Assume that d > AH . Then, dH = d and FH (dH ) = f (d). Since
f (d) > d > AH , it follows that F 2

H (dH ) = FH (f (d)) = f 2(d). On the
other hand, if AH < d = dH ≤ c · AR then FH (c·AR) = f (c·AR). With
this, all the results given in the statement for d > AH follow.

Suppose now d ≤ AH . Then, dH = AH and FH (dH ) = AH/h.
Since AH/h > AH , we conclude F 2

H (dH ) = FH (AH/h) = f (AH/h).
This completes all the cases for l(c, h). To derive the expression
for u(c, h), we consider two cases. If d > c · AR, then AH > c · AR
and u(c, h) = FH (AH ) = AH/h. If d ≤ c · AR, then f is strictly
decreasing in the interval defined by c ·AR and AH , being min{f (c ·

AR), f (AH ) = AH/h} = f (max{c · AR, AH}). For AH > c · AR, we have
u(c, h) = FH (AH ) = f (AH ) = min{f (c · AR), AH}, and for AH ≤ c · AR
it follows that u(c, h) = FH (c · AR) = f (c · AR) = min{f (c · AR), AH}.
This completes the proof. □

The analysis of the expressions for the endpoints of the trap-
ping interval given in Proposition 2 reveals that harvesting does
not affect the fluctuation range of the population when d ≥ AH .
The reason for this is that in such a case the stock–recruitment



J. Segura, F.M. Hilker and D. Franco / Theoretical Population Biology 130 (2019) 1–12 11

Fig. C.1. Type of intervention (restocking, harvesting or their combination) that corresponds to the effect of CALC on different production functions. For each column,
the first row shows a production function f and the second row the corresponding distribution of the type of intervention in terms of the control intensities. Value
f (d) is the maximum of the population production, achieved by populations with size d, and f 2 = f ◦ f . In (c), the first generation was omitted in the only harvesting
area.

curves of both controlled and uncontrolled populations have a
common maximum f (d). Consequently, if we want harvesting to
reduce the fluctuation range with respect to the uncontrolled
population, the harvesting intensity must be higher than d/f (d).

Appendix C. CALC for different production functions

In this section, we study the type of intervention (restock-
ing, harvesting or their combination) that corresponds to CALC
depending on the control parameters for different production
functions of the uncontrolled population. We consider four cases.

First, we consider unimodal maps (e.g., Ricker), for which the
CALC function is shown in Fig. 2. If d denotes the abscissa of the
maximum production, after the first generation the population
size is always below f (d). Thus, for low enough values of c
(namely, c ≤ f 2(d)/f (d), where f 2 = f ◦ f ) and after the first
generation, all possible interventions consist of harvesting only.
Similarly, for low enough values of h (namely, h ≤ 1/f ′(0+)), the
graph of f is below the straight line y = x/h for all values of x.
Thus, in that case all possible interventions consist of restocking
only. For c > f 2(d)/f (d) and h > 1/f ′(0+) the population can be
either harvested or restocked depending on its size. Finally, for
c ≤ f 2(d)/f (d) and h ≤ 1/f ′(0+), the population remains uncon-
trolled. The distribution of the type of intervention (uncontrolled,
restocking only, harvesting only or a mixture of harvesting and
restocking) is represented in Fig. 3.

Second, we consider maps like the one represented in Fig. C.1a,
which is compatible with the Beverton–Holt model with constant
immigration. In this case, CALC leads to restocking for any c > 0
and to harvesting for any h > 0. Consequently, restocking and
harvesting are combined for (c, h) ∈ (0, 1)×(0, 1), only restocking
is implemented for (c, h) ∈ (0, 1) × {0}, only harvesting for
(c, h) ∈ {0} × (0, 1), and the population remains uncontrolled for
(c, h) = (0, 0).

Third, for the production function shown in Fig. C.1b, which is
compatible with the Beverton–Holt model, there is a threshold for
harvesting given by h0 = 1/f ′(0+), while there is no threshold for
restocking. Therefore, CALC leads to a combination of restocking

and harvesting for (c, h) ∈ (0, 1) × (h0, 1), only restocking for
(c, h) ∈ (0, 1) × [0, h0), only harvesting for (c, h) ∈ {0} × (h0, 1),
and the population remains uncontrolled for (c, h) ∈ {0}×[0, h0].

Finally, for the map shown in Fig. C.1c, which is compatible
with the Ricker model (or any other unimodal map) with constant
immigration, there is a restocking threshold c0 = f 2(d)/f (d) and
no harvesting threshold. In this case, restocking can act in the
first generation for any restocking intensity, but the population
is never supplemented in subsequent generations if c < c0.
Consequently, after the first generation harvesting and restocking
are combined for (c, h) ∈ (c0, 1) × (0, 1), only restocking for
(c, h) ∈ (c0, 1) × {0}, only harvesting for (c, h) ∈ [0, c0] × (0, 1),
and the population remains uncontrolled for (c, h) ∈ [0, c0]×{0}.
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