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Abstract. Motivated by a problem in the management of ecological populations, we study
the bifurcation structure known as period adding structure for a family of one-dimensional bimodal
piecewise linear maps. This structure is rather degenerate compared to the general case usually
addressed in the literature. The degeneracy affects both the type of border collision bifurcations
constituting the bifurcation structure and the number and location of the bifurcation points in the
parameter space. We provide rigorous theoretical results that yield a complete description of the
degenerate border collision bifurcations and a full determination of the bifurcation structure. This
allows us to extend partial results previously reported about a similar problem. From an ecological
point of view, we provide numerical simulations showing potential risks and opportunities associated
with the bifurcation structure studied here. Moreover, we provide examples of applications of our
results to some well-known population models, showing that the period adding structure ranges from
very simple to very intricate.
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1. Introduction. Actions in population management are often based on thresh-
olds. For instance, when pests or nuisance species are too abundant, start harvesting
them. If endangered species or game species become too rare, start restocking them.
These threshold-based management actions lead to dynamical systems that are usu-
ally nonsmooth at the thresholds [9, 19, 23, 34, 35, 42, 43].

When parameters of a smooth system are varied in a certain direction in the
parameter space, transitions between regular dynamics and chaos generally occur
through a route to chaos, which consists of a certain sequence of bifurcations (for a
review of these mechanisms see, for instance, [1]). However, in the case of nonsmooth
systems these transitions may occur through a single bifurcation [8]. In this paper, we
consider the case of one-dimensional (1D) piecewise smooth maps. These maps are
characterized by the fact that the state space consists of several partitions separated
by points at which the map is not differentiable, to which we will refer as break
points or kink points. As parameters are varied, collisions between an invariant set
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§Departamento de Matemática Aplicada, E.T.S.I. Industriales, Universidad Nacional de

Educación a Distancia (UNED), c/ Juan del Rosal 12, 28040, Madrid, Spain (dfranco@ind.uned.es).

1356

D
ow

nl
oa

de
d 

05
/3

0/
20

 to
 1

38
.3

8.
44

.1
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M1251023
mailto:joan.segura@upf.edu
mailto:frank.hilker@uni-osnabrueck.de
mailto:dfranco@ind.uned.es


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEGENERATE PAS OF 1D BIMODAL PWL MAPS 1357

and one of the break points can induce abrupt changes in the dynamics of piecewise
smooth maps (e.g., the transition from an attracting fixed point to a chaotic attractor).
These collisions correspond to the so-called border collision bifurcations (BCB), a term
originally introduced by Nusse and Yorke [28]. This type of bifurcation can give rise
to many structures that are completely different from scenarios occurring in smooth
systems [4]. Several papers have studied these structures for certain families of maps
(see, for instance, [17]).

In this paper, we consider a management problem from population biology, where
the aim is to stabilize fluctuating population dynamics (in order to reduce extinction
risk [11, 20, 24, 36] or to reduce variability in the yield [2, 6, 27, 38]). A recently intro-
duced management strategy [37], combined adaptive limiter control (CALC), is based
on two “adaptive” thresholds, where the population is harvested if it has increased too
much and it is restocked if it has decreased too much. This management strategy is
modeled by maps with two break points that split the state space into three partitions
and make the maps bimodal. The outermost branches of the maps are determined
by the control parameters and are linear. In the central partition of the state space,
the control plays no role and the maps are given by the production function of the
population, which may have any functional form (cf. Figure 1). A study of the per-
formance of CALC in the management of different biological populations from several
points of views (e.g., the enhancement of the stability or the prevention of population
outbreaks) can be found in [37].

As already said, CALC is aimed at stabilizing fluctuating populations, which in
many occasions can be described by unimodal maps with an unstable positive equi-
librium. This is also the case we consider in this paper. For these population maps,
the length of the central partition of the CALC map depends inversely on the con-
trol intensities. Thus, for high enough control intensities, given that the equilibrium
acts as a repeller, the state variable is expected to leave the central partition of the
state space after a certain period of time. For this reason, we focus our attention
on the outermost partitions of the state space and study the bifurcation structure
associated with the collision between the kink points and invariant sets lying in these

Fig. 1. CALC function in the solid line, for a given production function f in the dashed line
describing the underlying dynamics. The adaptive limiters are represented in the dotted line. AH
and AR are breakpoints induced by the adaptive limiters.
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1358 JUAN SEGURA, FRANK M. HILKER, AND DANIEL FRANCO

partitions. From the ecological point of view, there are also several reasons to study
the outermost partitions of the state space. First, these partitions are more relevant
to cases where the population size reaches rather small or large values, respectively
corresponding to scenarios close to extinction or to population outbreaks. Second,
the outermost partitions of the domain correspond to population sizes further away
from the unstable positive equilibrium of the uncontrolled population. One may ex-
pect that this would make management more complicated because the situation is far
from the uncontrolled scenario that may be the objective of the stabilization.

Since we consider only collisions with invariant sets lying in the outermost parti-
tions of the state space, the dynamics of CALC at the bifurcation points are indepen-
dent of the expression of the CALC map in the central partition, which corresponds
to the production function of the population. Thus, for the description of the BCB
of CALC we can replace the function in the central partition of the state space by
a straight line joining the kink points of the map. This allows us to relate CALC
to the broad existing literature about 1D piecewise linear (PWL) maps, which are
characterized by all their branches being affine. These maps play a distinctive role
among piecewise smooth maps and naturally appear in applied problems of a wide
range of fields, e.g., circuit theory [13, 22, 44], economics [5, 16, 41], or cellular neural
networks [10, 21, 26].

Many different bifurcation structures have been deeply studied for 1D piecewise
maps with either affine (see, e.g., [3, 29, 30, 31]) or nonlinear (see, e.g., [3, 39, 40])
branches. Yet, the case corresponding to CALC is a special case of the former, since
the outermost branches of the CALC map are linear, i.e., homogeneous. We show that
the bifurcations observed for 1D bimodal PWL maps with the outermost branches
linear correspond to a rather degenerate case of the already known bifurcation struc-
ture in the general case. The degeneracy of this case is twofold. First, the bifurcations
that are observed constitute a degenerate case of BCBs that, to our knowledge, has
not been studied yet. Second, the bifurcation structure, i.e., the number and location
of the bifurcation points in the parameter space, also constitutes a degenerate case of
the bifurcation structure of the general family of bimodal PWL maps. This degen-
eracy in the bifurcation structure (but not in the type of bifurcation) was previously
reported by Foroni, Avellone, and Panchuk in [12] for a similar dynamical system,
whose study was motivated by an economic model. Foroni, Avellone, and Panchuk
[12] succeeded in providing a partial result for the determination of bifurcation points.
That is, only a necessary but not sufficient condition for the occurrence of bifurcations
was reported. This leaves the problem undetermined, since with just the condition
provided in [12] the number of combinations of parameters for which a bifurcation
could potentially occur is extremely high. This indetermination would imply serious
difficulties in the ecological problem motivating this paper, since finding control in-
tensities away from any potential bifurcation would be difficult or even impossible
with just the condition given in [12]. In this sense, it is of practical interest to exactly
determine which combinations of parameter values correspond to bifurcation points
and which ones do not.

Of course, this requires finding a necessary and sufficient condition for the occur-
rence of the considered bifurcations. We provide and prove such a condition not only
for CALC and for the problem considered in [12] but for a broader family of maps
that covers all the cases in which the degenerate bifurcations under study take place.
By using that condition, we fully determine the bifurcation structure of CALC and
complete the analytical description of the bifurcation structure of the family of maps
considered in [12]. Regarding the degenerate bifurcations studied in this paper, we
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DEGENERATE PAS OF 1D BIMODAL PWL MAPS 1359

provide a complete theoretical description. We prove that a continuum of cycles lying
on the outermost partitions of the state space emerge at the bifurcation points, while
in the nondegenerate case a unique cycle satisfying that condition exists. We also
show that no cycles of this kind exist at either side of the bifurcation points.

As an application of the above results, we provide numerical simulations of pop-
ulations managed by CALC for some well-known models in discrete-time population
dynamics, namely the Ricker [32] and Hassell [18] models. These simulations show
that at the bifurcation points the continuum of cycles appears to attract all possible
orbits except those corresponding to fixed points. This has important implications
from the practical point of view. In the case that managers are interested in keeping
populations away from bifurcation points but this is not possible, the results provided
here allow them to know in advance which dynamical behavior can be expected for
the managed populations. Additionally, these examples show that the bifurcation
structure for CALC strongly depends on the underlying dynamics and ranges from
very simple to very intricate.

2. Combined adaptive limiter control. We start by describing and modeling
CALC, followed by a description of abrupt transitions between different attractors
that may occur in the dynamics of populations managed by that strategy.

2.1. Description of the general dynamic model. Populations managed by
CALC can be either restocked or harvested depending on the population size. If
the population size xt at time step t grows beyond a certain proportion xt/h with
h ∈ (0, 1), the population is harvested and its size is reset to this proportion. If the
population size declines below another proportion cxt with c ∈ (0, 1), the population
is restocked and its size is reset to this proportion. This two-parameter strategy
combines the one-parameter strategies of adaptive limiter control [34] and adaptive
threshold harvesting [35]. To obtain a mathematical model for CALC, we denote by
bt the population size at time step t before the control intervention and by at the
population size after intervention. The dynamics of populations managed by CALC
are given by the system of difference equations

bt+1 = f(at),

at+1 =


cat, bt+1 < cat,

bt+1, cat ≤ bt+1 ≤ at/h,
at/h, bt+1 > at/h,

(2.1)

where f is the production function of the uncontrolled population and c, h ∈ (0, 1) are
the restocking and harvesting intensities, respectively. Substituting the value of bt+1

into the second equation of (2.1), the dynamics of populations managed by CALC are
described by the piecewise 1D difference equation

at+1 =


cat, f(at) < cat,

f(at), cat ≤ f(at) ≤ at/h,
at/h, f(at) > at/h.

The effect of CALC on a specific population model is shown in Figure 2. Similarly
to adaptive limiter control [14, 15, 33, 34, 42] and adaptive threshold harvesting
[35, 36], we observe that CALC is able to reduce the range of fluctuations in the
population size.
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1360 JUAN SEGURA, FRANK M. HILKER, AND DANIEL FRANCO

Fig. 2. During the first 40 generations the population is uncontrolled and its dynamics are
described by the Ricker map f(x) = x exp(r(1 − x/K)) with r = 3 and K = 60. In the next 60
generations, the population is managed by CALC with intensities c = 0.5 and h = 0.55. Black circles
correspond to the population size before the control intervention, and red squares after intervention.

2.2. CALC of unimodal population maps. We will assume that the under-
lying population dynamics are given by a first-order 1D difference equation of the
form

(2.2) xt+1 = f(xt), x0 ∈ [0,+∞), t ∈ N,

with f satisfying the following conditions:
(C1) f : [0,+∞) → [0,+∞) is continuously differentiable and such that f(x) > 0

for all x ∈ (0,+∞).
(C2) f has two nonnegative fixed points x = 0 and x = K > 0, with f(x) > x for

0 < x < K and f(x) < x for x > K.
(C3) f has a unique critical point d ∈ (0,K) in such a way that f ′(x) > 0 for all

x ∈ (0, d), f ′(x) < 0 for all x ∈ (d,+∞), and f ′(0+) ∈ R.
(C4) f is concave downward in (0, d).

These conditions describe a hump-shaped production function peaking at x =
d with two fixed points, namely (i) the extinction state x = 0 and (ii) a positive
equilibrium x = K, which corresponds to the carrying capacity of the population.
Biologically speaking, the dynamics are overcompensatory with no demographic Allee
effect. Many common models satisfy these conditions, e.g., the Ricker [32], Hassell
[18], or generalized Beverton–Holt [7] models, which are suitable to model populations
with a pronounced reproductive cycle.

Assuming conditions (C1)–(C4), CALC combines both restocking and harvesting
for given (c, h) ∈ (0, 1) × (0, 1) only when the two straight lines y = cx and y = x/h
have nonzero intersections with the curve y = f(x). This happens only when the
harvesting intensity is high enough, namely h > infx∈(0,+∞) x/f(x). In what follows,
we will assume that this condition is met. Under this assumption, there is a unique
nonzero intersection between y = x/h and y = f(x), whose abscissa we denote by
AH . Similarly, for all c ∈ (0, 1) there is a unique nonzero intersection between y = cx
and y = f(x), whose abscissa we denote by AR. Moreover, given that c < 1 < 1/h,
these two points are always different and satisfy AH < K < AR (cf. Figure 1). With
this, the dynamics of populations subject to CALC are described by the difference
equation xt+1 = F (xt), where F : [0,+∞) → [0,+∞) is the piecewise function given
by

(2.3) F (x) =


x/h, 0 ≤ x ≤ AH ,
f(x), AH < x < AR,

cx, x > AR.
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Function F is bimodal since it increases for x < max{d,AH}, then decreases for
max{d,AH} < x < AR, and increases again on the rest of the domain. Moreover, the
functional form of the two outermost branches of F (the first ranging from 0 to AH and
the last from AR to +∞) are independent of the underlying population production
function and are determined by the control intensities. Yet, the population map f
defines the length of each of these branches.

2.3. Transitions induced by the combination of restocking and harvest-
ing. The stabilizing properties of CALC can be observed in Figure 3 for the Ricker
map f(x) = x exp(r(1−x/K)) with r = 3 and K = 60, where the restocking intensity
is set at c = 0.6 and the harvesting intensity is varied. For low harvesting intensities
(h . 0.4), restocking prevails and the reduction in the fluctuation range (i.e., the dif-
ference between the asymptotic maximum and minimum population sizes) is only due
to restocking (for the uncontrolled system, the asymptotic population size ranges from

Fig. 3. Bifurcation diagram for CALC with c = 0.6 and varying h. The underlying population
dynamics are given by the Ricker map f(x) = x exp(r(1− x/K)) with r = 3 and K = 60. For each
value of h, black dots represent 30 iterates of the state variable after a transient of 10,000 iterates
with initial conditions obtained as pseudorandom real numbers in the interval (0, f(d)]. For h = 0.6
and h =

√
0.6, iterates were obtained for 1,000 different initial conditions, which are respectively

represented by orange and green dots.
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1362 JUAN SEGURA, FRANK M. HILKER, AND DANIEL FRANCO

f2(d) ≈ 1.834 to f(d) ≈ 147.781). For high enough harvesting intensities (h & 0.4),
the fluctuation range decreases as h increases. A similar behavior is observed for fixed
h and varying c (not shown here).

In addition to the stabilizing effect of CALC, Figure 3 shows another important
fact that is the focus of this paper. For certain combinations of the control parameters
(e.g., c = h = 0.6), abrupt jumps between different attractors are observed. Inter-
estingly, such a behavior is inherent to the combination of restocking and harvesting,
since it is not observed when only restocking [14, 34] or only harvesting [35] are con-
sidered. This suggests that around the critical points in the parameter space for which
these phenomena occur, slight variations in the control intensities may have severe
consequences in the managed populations, which we elaborate on in the following.

From the ecological point of view, the population size undergoes a sharp change.
As Figure 3 shows, the attractors on different sides of the critical points may corre-
spond to significantly different population sizes. This is also reflected in the average
population size (cf. Figure 4). Such a transition can seriously affect the stability and
persistence of the managed populations in certain situations. This would be the case,
for instance, for populations at risk of extinction. In such a case, a sharp shift from
an attractor to another corresponding to lower population sizes could threaten the
population persistence. By contrast, such a transition could be beneficial in the case
of nuisance or invasive species.

There are several implications that these abrupt changes in the dynamics may
have from a management point of view. As can be observed in Figure 4, the transition
between different attractors entails a sharp change in the number of individuals that
are restocked or harvested. On one side of the critical point in the parameter space the
intervention is essentially based on restocking and few individuals are harvested. By
contrast, on the other side, only few individuals are restocked and harvesting prevails.
Logically, such a transition may have severe consequences on the cost and yield of the
intervention. For instance, in the case of exploited populations, shifting from mostly
harvesting to mostly restocking drastically reduces the yield and increases the cost of

Fig. 4. For CALC with a fixed restocking intensity c = 0.6 and varying the harvesting intensity,
the black dots represent the asymptotic average population size during 100 generations, the red dots
represent the asymptotic number of restocked individuals, and the blue dots represent the asymp-
totic number of harvested individuals. All values are averaged over 50 replicates. The underlying
population dynamics are given by the Ricker map f(x) = x exp(r(1−x/K)) with r = 3 and K = 60.

D
ow

nl
oa

de
d 

05
/3

0/
20

 to
 1

38
.3

8.
44

.1
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEGENERATE PAS OF 1D BIMODAL PWL MAPS 1363

the exploitation. Of course, this would also imply serious problems with respect to
the organization, planning, and preparation of the intervention, since it would have to
be completely overhauled, provided that the necessary resources are available at all.

3. Bifurcation structure. The aim of this section is to study the bifurcation
structure associated with the abrupt changes in the dynamics of populations man-
aged by CALC that were observed in the previous section. To that end, as said in
the introduction, we relate CALC to general 1D bimodal PWL maps. We start by
introducing the family of these maps and showing that the maps with the outermost
branches being linear like the CALC map constitute a strict subfamily. Next, we pro-
vide necessary and sufficient conditions for the occurrence of certain BCBs in terms of
the parameters for this subfamily. Finally, we study the dynamics at the bifurcation
points.

3.1. Border collision bifurcations and period adding structure of
general 1D continuous bimodal piecewise linear maps. One-dimensional con-
tinuous bimodal PWL maps can be written in the form

(3.1) F (x) =


FL(x) = aLx+ µL, 0 ≤ x ≤ dL,
FM(x) = aMx+ µM, dL < x < dR,

FR(x) = aRx+ µR, x ≥ dR,

with aM, µL, µM, µR ∈ R and dL, dR, aL, aR ∈ (0,+∞). In what follows, we will de-
note the outermost partitions of the domain of F by IL = [0, dL] and IR = [dR,+∞).

Notice that (3.1) depends on eight parameters, but two of them can always be
obtained from the others by imposing continuity. Since the commonality between
CALC and (3.1) is in the outermost branches, we will assume that aM and µM are
determined in terms of aL, aR, µL, µR, dL, and dR. In what follows, we will denote
by F the resulting six-parametric family of maps. Considering only the outermost
partitions of the state space, the CALC map (2.3) in terms of the control intensities c
and h can be considered as a biparametric subfamily F1 ⊂ F under certain parameter
restrictions. First, the linearity of the outermost branches of (2.3) implies µL = 0 and
µR = 0. Second, the two kink points dL = AH and dR = AR of (2.3) are uniquely
determined in terms of c and h by the equalities f(dL) = aLdL and f(dR) = aRdR,
where aL = 1/h and aR = c.

As parameters are varied, periodic orbits of (3.1) can collide with either dL or dR.
This gives rise to three different bifurcation structures depending on which partitions
of the state space contain points of these cycles [31]:

• Skew tent map structure: the points of the cycles are located on two adjacent
partitions of the state space.

• Period adding structure: the points of the cycles are located on the outermost
partitions of the state space.

• Fin structure: the points of the cycles are located on all three partitions of
the state space.

As already mentioned, we restrict our study to border collisions caused by invari-
ant sets lying in the outermost partitions of the state space, and thus we focus on
BCBs associated with the period adding structure (PAS). The elements of this struc-
ture are called periodicity regions (also known as Arnold tongues or mode-locking
tongues) and are regions in the parameter space for which there exist cycles with all
their points lying in IL ∪ IR. Two periodicity regions differ in the number of points
of their cycles in IL and IR.
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The PAS for F can be determined in terms of the rotation numbers of the asso-
ciated cycles [31]. If a cycle lying in IL ∪ IR has m points in IL and n points in IR,
we define its rotation number as the rational number ρ = m/(n+m), i.e., the number
of points in the leftmost partition of the state space divided by the period of the
cycle. Two rotation numbers ρ1 = m1/p1 and ρ2 = m2/p2 are Farey neighbors when
|m1p2 −m2p1| = 1, and their Farey sum is defined as ρ1⊕ρ2 = (m1+m2)/(p1+p2). Using
these definitions, the order and existence of the periodicity regions of F are completely
determined by the following rule: if two periodicity regions are associated with cycles
with Farey neighbor rotation numbers ρ1 and ρ2, then in the parameter space between
them there exists another periodicity region related to cycles with rotation number
ρ1⊕ρ2. It is because of this rule that the bifurcation structure is called period adding.
Based on this principle, the PAS of F was iteratively determined in [31] by using
Leonov’s approach [17, 25]. Given a rotation number, the corresponding periodicity
region is a portion of the 6D parameter space bounded by two different manifolds,
which are derived by imposing the collision of each of the kink points of (3.1) with
cycles of that rotation number.

3.2. Determining border collision bifurcation points under certain
homogeneity conditions. Since F1 ⊂ F , it would be logical to think that one
could obtain a complete description of the PAS of F1 by substituting the parameter
restrictions defining this subfamily into the already known expressions for the period-
icity regions of F . Unfortunately, we will see that this is not the case. This idea was
used in [12] for another biparametric subfamily of maps F2 ⊂ F given by the param-
eter restrictions µL = 0, µR = 0, aL+aR = 2, and 2dLdR−dL−dR = 0. Notice that
two of these restrictions, µL = 0 and µR = 0, are common with F1. If we consider only
these two restrictions, we obtain a four-parametric subfamily F0 ⊂ F that includes
both F1 and F2 as strict subfamilies. Consider a rotation number m/(n+m). It could
be expected that when the two restrictions for F0 were substituted into the equations
of the two manifolds ξL and ξR bounding the corresponding periodicity region of F
(which, recall, lie in a 6D space), they would lead to another two manifolds in the 4D
parameter space of F0. In that case, the periodicity region of F0 for the given rota-
tion number would be the parameter space between these two manifolds. However,
when µL = 0 and µR = 0 are substituted into the equations of ξL and ξR not only
µL and µR vanish, but also dL and dR drop from the equations. To illustrate this
consider, for instance, m = 1. In that case, the equations of ξL and ξR after imposing
µL = µR = 0 are given by [12]

ξL :
(1− aLanR) dL

anR
= 0,

ξR :
(1− aLanR) dR

an−1R
= 0.

As can be observed, dL and dR are irrelevant in these equations and ξL and ξR are
reduced to a unique manifold in the 4D parameter space of F0, which is given by
aLa

n
R = 1. This last condition can be generalized to amL a

n
R = 1 for a generic rotation

number m/(n+m) [12]. This means that the PAS of F0 is rather degenerate with respect
to the one of F , since all periodicity regions of F0 have null Lebesgue measure in its
parameter space. In particular, all points in a periodicity region of F0 are bifurcation
points, i.e., for all of them at least one of the kink points is in a cycle with all its
points in the outermost partitions of the state space.
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The main inconvenience of the fact that dL and dR drop from the equations
of ξL and ξR when the restriction µL = µR = 0 is imposed is that the condition
that is obtained after substitution, amL a

n
R = 1, is necessary but not sufficient for the

occurrence of BCBs of the PAS of F0. Indeed, dL and dR actually play a central
role in the problem. Assume that the four parameters defining F0 are set at values
satisfying dL < min{aRdR, dR/aL}, aL > 1, 0 < aR < 1, and amL a

n
R = 1 for certain

n,m ∈ N. According to the last equality, we could expect that a BCB of the PAS
of F0 occurred for these values, i.e., that either dL or dR was in a cycle with all its
points in IL ∪ IR. However, this is not possible since dL < FL(dL) = aLdL < dR and
dL < FR(dR) = aRdR < dR.

If the PAS of F0 cannot be completely determined by direct substitution of its
parameter restrictions into the PAS of F , neither can the PAS of any subfamily of F0

like the F1 considered here or the F2 considered in [12]. This was implicitly observed
for F2 in [12] when it was shown that in some specific cases no BCB can occur even
if the condition amL a

n
R = 1 is met. Yet, no complete description of the PAS of F2

in terms of the parameters was obtained. With the following result, which yields a
necessary and sufficient condition for the occurrence of BCBs of the PAS of F0, we
will complete this description and fully determine the PAS of CALC.

Proposition 3.1. A boundary collision bifurcation of the period adding structure
of (3.1) with µL = µR = 0 occurs if and only if there exist λ ∈ (0, 1) and m,n ∈ N
with gcd(m,n) = 1 such that aL = λ−n, aR = λm, and λdR ≤ dL. Moreover, the two
kink points dL and dR are (m+ n)-periodic and their orbits have m points in IL and
n points in IR.

Proof. Assume that a BCB of the PAS of (3.1) with µL = µR = 0 occurs. Then,
either dL or dR must be in a cycle O with all its points in IL ∪ IR. Assume that this
cycle has m points in IL and n points in IR. Since FL(x) = aLx and FR(x) = aRx
commute under composition, if dL ∈ O then amL a

n
RdL = dL. Similarly, dR ∈ O leads

to amL a
n
RdR = dR. Given that 0 < dL < dR, the terms dL and dR can be canceled

from these equalities, after which both of them lead to the same condition amL a
n
R = 1.

In the case that aL < 1, all orbits starting in IL would stay in IL and monotonically
converge to 0, which contradicts the occurrence of a BCB. Therefore, it must be

aL > 1 and 0 < aR < 1. Then, if we set λ = a
1/m
R ∈ (0, 1) it follows that aL = λ−n

and aR = λm. On the other hand, if gcd(m,n) = d > 1, then m/d ∈ N, n/d ∈ N, and

a
−m/d
L a

n/d
R = 1, and thus m+ n is not the prime period of O. Consequently, we can

assume gcd(m,n) = 1.
Suppose that dR ∈ O. Since O ⊂ (IL ∪ IR), any point of O can be obtained

by starting at dR and successively applying FR(x) = λmx a certain number p of
times and FL(x) = λ−nx another certain number q of times in a specific order, with
p ∈ {0, . . . , n − 1} and q ∈ {0, . . . ,m − 1}. Given that FR and FL commute under
composition, all the points of O can be expressed in the form λpm−qndR for certain
p and q in the aforementioned ranges. Since m and n are coprime, using Bezout’s
lemma we can find p and q such that pm − qn = 1. Thus, λdR ∈ O. On the other
hand, given that λdR < dR and O ⊂ (IL ∪ IR), it follows that λdR ∈ IL, and thus
λdR ≤ dL. The same condition is derived when repeating these arguments for the
case dL ∈ O.

Assume now that there exist λ ∈ (0, 1) and m,n ∈ N with gcd(m,n) = 1 such that
aL = λ−n, aR = λm, and λdR ≤ dL. We will prove that the set U =

{
λidR

}m
i=1−n is

an (m+n)-cycle that has m points in IL and n points in IR. Consider UL =
{
λidR

}m
i=1
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1366 JUAN SEGURA, FRANK M. HILKER, AND DANIEL FRANCO

and UR =
{
λidR

}0
i=1−n. With this notation, U = UL ∪ UR, UL ⊂ IL, and UR ⊂ IR.

Given that λ < 1, F (x) = FL(x) = λ−nx > x for x ∈ UL and F (x) = FR(x) =
λmx < x for x ∈ UR. Besides, F (maxUL) = F (λdR) = λ1−ndR = maxU and
F (minUR) = F (dR) = λmdR = minU . This proves that U is an invariant set for F .

Suppose now that F q(x) = x for certain x ∈ U and q ∈ N. Since U is F -
invariant, it follows that {x, F (x), . . . , F q−1(x)} ⊂ (IL ∪ IR). Assume that m̃ of
these points lies in IL and ñ in IR. Then, by the commutativity between FL and
FR, it follows that F q(x) = λmñ−nm̃x = x, which implies mñ = nm̃. Since m
and n are coprime, this equality is only possible if m̃ is a multiple of m and ñ is
a multiple of n. Assume that m̃ = km for a certain k ∈ N. Then, ñ = kn and
q = m̃ + ñ = k(m + n) ≥ m + n. This implies that the m + n points of the set
V = {dR, F (dR), . . . , Fm+n−1(dR)} ⊆ U are all different, and thus V = U . Since m
points of U lie in IL and n lie in IR, again by the commutativity between FL and
FR, it follows that Fm+n(dR) = (λ−n)m(λm)ndR = dR. This proves that dR is in
an (m+ n)-cycle that has m points in IL and n points in IR and thus, in particular,
a BCB of the PAS of (3.1) occurs for the considered parameter values. The same
conclusion can be drawn for the kink point dL by applying the same arguments to

the set Ũ =
{
λidL

}m−1
i=−n.

Interestingly, for the family F BCBs can occur for any positive values of aL and
aR [30]. However, Proposition 3.1 shows that for the subfamily F0 they can only take
place for aL > 1 and 0 < aR < 1. On the other hand, Proposition 3.1 resolves the
degeneracy in the PAS of F that emerges when the homogeneity of the outermost
branches of the maps is imposed. In particular, this result determines the PAS of any
subfamily of F contained in F0, as can be the subfamily F1 corresponding to CALC
or the subfamily F2 considered in [12].

Corollary 3.2. Assume that (C1)–(C4) hold. A boundary collision bifurcation
of the period adding structure of CALC occurs if and only if there exist λ ∈ (0, 1) and
m,n ∈ N with gcd(m,n) = 1 such that h = λn, c = λm, and λAR ≤ AH . Moreover,
both AH and AR are (m+ n)-periodic and their orbits have m points in (0, AH ] and
n points in [AR,+∞).

In section 4 we will use Corollary 3.2 to determine the PAS of CALC for different
population growth models describing the underlying dynamics. In the remainder of
this subsection, we use Proposition 3.1 to complete the study of the PAS of F2 started
in [12]. Following the notation in that paper, after imposing the parameter restrictions
defining F2, we write the parameters of (3.1) in terms of r ∈ (0, 1) and ε > r in the
form aL = 1 + r, aR = 1− r, dL = ε/(ε+r), and dR = ε/(ε−r).

Corollary 3.3. Consider (3.1) for aL = 1 + r, aR = 1 − r, dL = ε/(ε+r), and
dR = ε/(ε−r), with r ∈ (0, 1) and ε > r. Then, a boundary collision bifurcation of the
period adding structure occurs if and only if there exist m,n ∈ N with gcd(m,n) = 1
such that

(3.2)

{
(1 + r)m(1− r)n = 1,

ε ≥ r
(

n
√
1+r+1

n
√
1+r−1

)
.

Moreover, both dL and dR are (m + n)-periodic and their orbits have m points in
(0, ε/(ε+r)] and n points in [ε/(ε−r),+∞).

The period adding structure in the r− ε plane that can be derived from Corollary
3.3 is shown in Figure 5, which reproduces Figure 5a in [12] with two important
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DEGENERATE PAS OF 1D BIMODAL PWL MAPS 1367

Fig. 5. Period adding structure of (3.1) for aL = 1 + r, aR = 1 − r, dL = ε/(ε+r), and
dR = ε/(ε−r), with r ∈ (0, 1) and ε > r. This figure is analogous to Figure 5a in [12], except that the
periodicity region of rotation number 1/2 has been omitted and the endpoints of the different regions
are analytically determined by Corollary 3.3. The curves containing these points are represented by
dashed lines and the expression of each of them is indicated.

differences. First, the periodicity region of rotation number 1/2 that appears in [12]
is not represented in Figure 5. The reason is that this region actually does not exist,
since it corresponds to r = 0 and for that value the graph of the map reduces to
the straight line y = x. Second, in [12] the endpoints of the periodicity regions were
only determined for Leonov’s first complexity level (blue lines in Figure 5), which in
this case correspond to n = 1. Specifically, in [12] it was proved by using the skew
tent map as normal form that the endpoints of the periodicity regions for the first
complexity level are on the line ε = r+ 2. The same conclusion can be directly drawn
by substituting n = 1 in the second condition of Corollary 3.3. For the remaining
periodicity regions (i.e., n ≥ 2), no expressions for the endpoints were provided in
[12] and it was only stated that all of them are above the line ε = r + 2. The second
condition in Corollary 3.3 provides the exact values of the endpoints for all complexity
levels and completes the analytical determination of the PAS of the family of maps
considered in [12]. The curves containing these endpoints are represented by dashed
lines in Figure 5 and the analytical expression of each of them is indicated.

3.3. Degenerate border collision bifurcations. Apart from determining the
PAS of F0 (and, in particular, of CALC), Proposition 3.1 reveals another relevant
fact: when a BCB of the PAS occurs, the two kink points of the map collide at the
same time with cycles in the outermost partitions of the state space and that have the
same rotation number. This suggests that the BCBs for the family of maps F0 are
different from the ones that have been previously observed for F \F0 [29, 30, 31] and
constitute a rather degenerate case. For any fixed parameter point inside one of the
periodicity regions of the PAS of F \F0 there exists a unique cycle associated with it,
which can be attracting or not [29]. In particular, at a bifurcation point the unique
cycle that exists may contain either dL or dR. In the case of F0, by Proposition 3.1
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1368 JUAN SEGURA, FRANK M. HILKER, AND DANIEL FRANCO

we know that at any bifurcation point there exist, at least, two different cycles with
the same rotation number when the parameters satisfy λdR < dL, one containing dL
and another containing dR. Apart from giving us a glimpse of the degeneracy of the
case, this difference leads to the question about the exact number of cycles with the
same rotation number that may exist at a bifurcation point of F0.

Beyond the theoretical interest of this question, it is also relevant from a practical
point of view in the case of CALC. Managers could be particularly interested in
avoiding control intensities corresponding to bifurcation points in light of the problems
that small variations of the parameters around these points may cause. However, in
case we were faced with one of these bifurcations, it would be of practical interest to
know in advance how the managed populations would behave.

To illustrate the dynamical behavior at bifurcation points of the PAS of maps of
F0 and compare that behavior to what is known for F \ F0, we consider the maps
f1 ∈ F \ F0 and f2 ∈ F0 given by

(3.3)

f1(x) =


2x+ 2, x ≤ 1,

(2α− 4.5)x+ 8.5− 2α, 1 < x < 2,

αx− 0.5, x ≥ 2,

f2(x) =


3x, x ≤ 1,

(2α− 3)x+ 6− 2α, 1 < x < 2,

αx, x ≥ 2,

with α ∈ (0, 1). It is routine to check that a bifurcation of the PAS of f1 occurs for
α = 3/8. For this value, the graph of f1 together with its second iterate f21 = f1 ◦ f1
is shown in Figure 6(a). In this case, the bifurcation occurs by the collision of dL = 1
with a cycle of rotation number 1/2, while the other kink point of the map, dR = 2, is
not 2-periodic. In fact, dR collides with a cycle of the same rotation number for a lower
value of α, namely α = 1/4. The parameter interval between these two bifurcation
points, (1/4, 3/8), corresponds to the periodicity region of rotation number 1/2. For all
parameter values inside that interval a unique 2-cycle exists, which lies in IL∪IR and
in this case is globally attracting as Figure 6(b) shows. The most important aspect,
however, is that no abrupt change in the magnitude of the state variable occurs when
α is varied through the bifurcation point. The situation is completely different for f2.
For this map, a bifurcation of the PAS associated with cycles of rotation number 1/2
occurs for α = 1/3. As shown in Figure 6(c) and in line with Proposition 3.1, for that
parameter value the two kink points of the map collide simultaneously with cycles of
that rotation number. Yet, not only the two break points of the map become periodic
at the bifurcation point, but a continuum of cycles with all their points lying in IL∪IR
and with the same rotation number 1/2 exist. Two important facts about these cycles
can be observed in Figure 6(d). First, these infinitely many 2-cycles do not exist for
values of parameter α on either side of the bifurcation point. Second, when α is
varied through the bifurcation point the magnitude of the state variable undergoes a
sharp shift between two different attractors, which are connected by the continuum
of 2-cycles. This is the same behavior that was observed for CALC in section 2.

This example illustrates the differences between the bifurcations of the PAS for
maps in F0 and those in F \ F0. In the following result we prove that the behavior
described in the example is generic for maps in F0.

Proposition 3.4. Consider (3.1) for µL = µR = 0. Assume that there exist
λ ∈ (0, 1) and m,n ∈ N with gcd(m,n) = 1 such that aL = λ−n, aR = λm, and
λdR ≤ dL. Then, the following holds:
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Fig. 6. (a) Graphical representation of f1 in (3.3) and its second iterate f21 = f1 ◦ f1 for
α = 3/8. (b) Bifurcation diagram of f1 in (3.3) for varying α. (c) Graphical representation of f2
in (3.3) and its second iterate f22 = f2 ◦ f2 for α = 1/3. (d) Bifurcation diagram of f2 in (3.3)
for varying α. In all panels, the orange points correspond to 2-cycles associated with BCBs of the
period adding structure, the red area corresponds to the interval IL, and the blue area corresponds
to IR.

(i) If λdR < dL, all points in

B =

m−1⋃
i=−n

[λi+1dR, λ
idL]

are (m+n)-periodic and their orbits have m points in IL and n points in IR.
(ii) If λdR = dL, dL and dR belong to the same periodic orbit of period m + n

with m points in IL and n points in IR.

Proof. Assume λdR < dL. Under this condition, B is a well-defined disjoint
union of nonempty intervals. For i ∈ {−n, . . . ,m − 1}, denote Ji = [λi+1dR, λ

idL]

and consider BL =
⋃m−1
i=0 Ji and BR =

⋃−1
i=−n Ji. With this notation, B = BL ∪ BR,

BL ∩ BR = ∅, BL ⊂ IL, and BR ⊂ IR. Given that λ < 1, F (x) = FL(x) = λ−nx > x
for x ∈ BL and F (x) = FR(x) = λmx < x for x ∈ BR. Besides, F (maxBL) =
F (dL) = λ−ndL = maxB and F (minBR) = F (dR) = λmdR = minB. With these
conditions, F (B) ⊂ [minB,maxB]. On the other hand, F is a bijection between Ji
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and Ji−n for i ∈ {0, . . . ,m− 1} and between Ji and Ji+m for i ∈ {−n, . . . ,−1}. This
proves that B is an invariant set for F and that the application of F to any point in
B leads to another point in a different component of B.

Suppose now that F q(Ji) = Ji for certain i ∈ {−n, . . . ,m− 1} and q ∈ N. Since
B is F -invariant and bijects components of B into different components of B, the q
intervals Ji, F (Ji), . . . , F

q−1(Ji) correspond to components of B. Assume that m̃ of
these intervals lie in BL and ñ in BR. Then, by the commutativity between FL and
FR it follows that F q(Ji) = λmñ−nm̃Ji = Ji, which implies mñ = nm̃. Under the
coprimality condition for m and n, this equality is only possible if m̃ is a multiple of m
and ñ is a multiple of n. Assume that m̃ = km for a certain k ∈ N. Then, ñ = kn and
q = m̃+ñ = k(m+n) ≥ m+n. This means that for any i ∈ {−n, . . . ,m−1} the m+n
intervals Ji, F (Ji), . . . , F

m+n−1(Ji) are different, and thus they correspond to each of
the components of B. Since B has m components in BL and n components in BR,
again by the commutativity of FL and FR we obtain Fm+n(Ji) = λmn−nmJi = Ji.
This proves that all the points of B are (m + n)-periodic and that their orbits have
m points in IL and n points in IR.

Assume now that λdR = dR. According to Proposition 3.1, a BCB occurs for
the control intensities given in Proposition 3.4 and both break points dL and dR are
(m+ n)-periodic. Moreover, in the proof of Proposition 3.1 it was shown that under
the conditions in Proposition 3.4 the point λdR is in the same cycle as dR, which
completes the proof.

Proposition 3.4 allows us to obtain a full picture of the degenerate BCBs con-
sidered here. No cycles lying in the outermost partitions of the state space exist for
parameter values outside the periodicity regions of F0. Since these regions have zero
Lebesgue measure in the parameter space and coincide with the bifurcation manifolds,
when parameters cross one of them a continuum of cycles lying in the outermost par-
titions of the state space emerge at the bifurcation point and disappear afterward.
This is what was observed for the map f2 in the previous example (cf. Figure 6(d)).

Remark 3.5. Two important facts must be stressed about Proposition 3.4 in the
case of CALC. First, notice that the results provided in this proposition are indepen-
dent of the expression of the map between the two kink points. In the case of CALC,
this means that the population map f plays no role in the dynamics at bifurcation
points of the PAS. Yet, according to Corollary 3.2, bifurcations of the PAS only occur
for λAR ≤ AH with c = λn, h = λm, and n,m coprime, and we know that in that
case the break points AR and AH are determined in terms of f by the equations
f(AR) = λmAR and f(AH) = λnAH . Consequently, although f plays no role in
the dynamics at the bifurcation points, it determines the number of bifurcations that
can occur and the combination of control intensities corresponding to them. Second,
parameters m and n in Proposition 3.4 have a specific meaning in the case of CALC.
They represent, respectively, the number of harvesting and restocking episodes that
are necessary to complete one of the cycles associated with BCBs if we consider a
point of the cycle as the initial condition. This result may be helpful to predict the
population behavior in the case of facing such a bifurcation. Moreover, according to
Corollary 3.2, when a BCB of CALC occurs the equality cn = hm holds. For c > h
we have cn = hm > hn, and thus m < n. Therefore, when at a bifurcation point the
restocking intensity is higher than the harvesting intensity, the number of restocking
episodes associated with the cycles of that bifurcation is larger than the number of
harvesting episodes. By the same argument, it can be seen that the opposite occurs
for c < h.
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4. Examples. In this section we use the theoretical results provided in the pre-
vious section to determine the period adding structure of CALC for two well-known
production maps. These examples show that this structure may range from very
simple to very intricate depending on the map that is considered.

4.1. Ricker model. We start by considering the Ricker map f(x) = x exp(r(1−
x/K)) with r = 3 and K = 60. Using Corollary 3.2, only two BCBs can occur for this
map, namely for c = h & 0.076 and c1/2 = h & 0.117. These two bifurcations can be
observed in the bifurcation diagram of Figure 3, where c is set at 0.6 and h is varied.
For c = h = 0.6, the inequality cAR < AH holds and an infinite number of 2-cycles
are predicted by Proposition 3.4. These cycles have one point in IL and another point
in IR and completely fill B = [cAR, AH ]∪ [AR, AH/c] u [42.13, 49.78]∪ [70.22, 82.97].
They correspond to the orange dots in Figure 3. The dynamics of these cycles is based
on alternating episodes of restocking and harvesting as the number of individuals
switches between the two components of B.

Similarly, for c = h2 = 0.6 the inequality
√
cAR < AH holds and a continuum of

3-cycles is predicted by Proposition 3.4. These cycles have two points in IL and one
point in IR and fill B = [cAR,

√
cAH ] ∪ [

√
cAR, AH ] ∪ [AR, AH/

√
c] u [42.13, 42.52] ∪

[54.39, 54.89] ∪ [70.22, 70.86]. They correspond to the green dots in Figure 3. The
dynamics of these cycles is based on a succession of three control episodes, which
consist of two consecutive episodes of harvesting followed by one episode of restocking.

At the two bifurcation points the continuum of cycles seems to attract all orbits
except those corresponding to fixed points. Thus, the managed populations asymp-
totically behave as has been described for these cycles.

From the practical point of view, if only two BCBs occur as in this example it
may be possible to implement the control in such a way that sharp changes in the
dynamics can be avoided (and thus, the problems associated with them). However,
the number of BCBs that can occur strongly depends on the production function for
the uncontrolled population. This number can be very large, as we illustrate in the
following subsection. In such a case, avoiding the negative effects of BCBs can be
particularly difficult.

4.2. Hassell model. As stated in Remark 3.5, the number of bifurcations of the
PAS of CALC depends on the population map f . The steeper this map is around the
positive fixed point of the production function, the closer AR and AH are for a fixed
λ satisfying c = λm and h = λn for coprime m,n ∈ N (recall that f(AR) = λmAR
and f(AH) = λ−nAH). Consequently, there are more chances for the existence of
values of λ satisfying λAR ≤ AH and, according to Corollary 3.2, more combinations
of control intensities can correspond to bifurcation points. In view of this, we consider
the Hassell map [18]

xt+1 =
Axt

(1 +Bxt)α

with A = 1000, B = 0.05, and α = 50. For these parameter values, the modulus
of the derivative of the production function around the carrying capacity is large,
namely approximately 8.20. Using Corollary 3.2, the PAS of CALC for this production
function was determined and is shown in Figure 7. Up to period 10, a total of 29
BCBs can occur for different values of the parameters. This demonstrates that the
number of bifurcations of the PAS of CALC can be very high, as well as the period
of the corresponding cycles. This may have severe consequences on the applicability
of CALC, as shown in Figure 8, where the bifurcation diagram of CALC for this last
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Fig. 7. (a) Period adding structure of CALC. (b) Distribution of periods of the period adding
structure of CALC for c = 0.6 and varying h. Each point is labeled in the form m/(m+ n), where
m denotes the number of points of the cycles in IL and n the number of points in IR. Both panels
are based on the Hassell map f(x) = Ax/(1+Bx)α with A = 1000, B = 0.05, and α = 50. In panel
(a) two colors are used to help distinguish different curves.

example with c = 0.6 and varying h is represented. As can be observed, the distance
between harvesting intensities of consecutive bifurcation points is short.

This last example demonstrates the practical relevance of Proposition 3.1. With-
out it, if only the necessary condition for the occurrence of BCBs obtained in [12] was
used, the difficulties in the application of CALC would be even greater than in this
last example for all population maps, including the Ricker model considered in the
first example. The reason for this is that for managers it may be hard to know which
combinations of control intensities satisfying cmhn = 1 for coprime m,n ∈ N actually
are bifurcation points and which ones are not. In that case, up to period 10, when
fixing one of the control intensities a total of 31 potential bifurcation points would be
obtained for the other control intensity in an interval of length 1. This would make
it difficult to find a combination of control intensities with guarantees of placing the
population away from any bifurcation point.
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Fig. 8. Bifurcation diagram for CALC with c = 0.6 and varying h based on the Hassell map
f(x) = Ax/(1+Bx)α with A = 1000, B = 0.05, and α = 50. For each value of h, black dots represent
30 iterates of the state variable after a transient of 10,000 iterates with initial conditions obtained
as pseudorandom real numbers in the interval (0, f(d)]. The vertical lines represent the harvesting
intensities for which BCBs occur according to Corollary 3.2, and the numbers above them indicate
the period of the cycles given by Proposition 3.4. For h = 0.6, iterates were obtained for 1,000
different initial conditions, which are represented by green dots.

5. Discussion and conclusions. The study presented here is motivated by an
application in population dynamics. We have considered CALC as a method for the
control of biological populations aimed at reducing the fluctuations in the population
size. This strategy corresponds to the combination of two already known control
methods, namely adaptive limiter control and adaptive threshold harvesting, of which
the former is based on restocking the population size and the latter constitutes its
harvesting version. In the analysis of CALC we observe abrupt transitions in the
dynamics of the managed populations that do not occur when only restocking or only
harvesting is implemented.

We provide numerical simulations showing potential risks and opportunities asso-
ciated with these changes in the dynamics. On the one hand, the number of individ-
uals undergoes sharp shifts between different attractors, which may seriously affect
the stability and persistence of the population. This can be a serious problem in
the case of endangered or commercially exploited species but an opportunity in the
case of nuisance or invasive species. On the other hand, transitions between different
attractors are coupled with abrupt changes in the type of control prevailing in the
intervention (restocking or harvesting). Again, this can be a problem as long as the
yield, cost, and logistics of the exploitation can be seriously affected. Yet, it can also
be beneficial. When it is very costly to restock a population, it can be interesting
to lead the population toward the side of the bifurcation point corresponding to the
attractor for which a lower number of individuals have to be restocked.

The theoretical analysis of these phenomena leads to a mathematical problem
concerning nonsmooth discrete dynamical systems. When the underlying dynamics
are described by unimodal maps, we have shown that the production function of
CALC is piecewise continuous with two angular points that divide the state space
into three intervals. This function is linear on the extreme partitions of its domain
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and is completely determined over them by the control intensities. The abrupt changes
in the population dynamics are caused by the collision of periodic orbits lying in the
outermost partitions of the state space with the break points of the CALC map. When
only the external branches of this map are considered, it can be seen in terms of the
control intensities as a biparametric family of bimodal PWL maps. We have shown
that this family can be derived via certain parameter restrictions from a more generic
six-parametric family of PWL maps, for which different bifurcation structures have
been described in the literature [29, 30, 31]. Among these structures, the focus is on
the so-called period adding structure, since it corresponds to bifurcations involving
events that occur only in the outermost partitions of the state space.

Similar considerations were previously done in [12] for another biparametric family
of PWL maps. This family has in common with CALC that the maps are purely linear
on the extreme partitions of their domain. An insightful description of the bifurcation
structure of this family of maps was obtained in [12] by direct substitution of the
parameter restrictions in the already known bifurcation structure for the generic six-
parametric family of PWL maps. However, only partial results were obtained. We
have shown that the imposition of the conditions for the homogeneity of the outermost
branches of the map induces a degeneracy in the PAS that makes it impossible to relate
the different structures via direct substitution of the parameter restrictions. We have
proved that the inclusion of an additional condition involving the break points of the
map resolves the indetermination in the PAS caused by this degeneracy. This allows
us to fully determine the PAS of any family of maps with the extreme branches purely
linear, e.g., CALC or the family of maps considered in [12].

Examples of the application of these theoretical results to the determination and
description of the PAS of CALC for some models common in population dynamics are
provided. These examples show that the number of BCBs strongly depends on the
production function of the uncontrolled population, and thus the range of possibilities
is wide.

We have also studied the degenerate BCBs that occur when homogeneity is im-
posed for the outermost branches of the map. We have proved that when parameters
are varied through one of the bifurcation points, a continuum of cycles lying in the
external partitions of the state space emerge and disappear afterward. Moreover,
we have obtained analytical results for the endpoints of the intervals filled by these
cycles. These results are independent of the functional expression of the map in the
middle partition of the domain and thus are applicable to CALC with any unimodal
growth model for the uncontrolled population. Numerical simulations reveal that the
state variable abruptly shifts between different attractors that are connected by the
continuum of cycles that exist at the bifurcation points.

We point out that our study has focused on the bifurcation structure associated
with collisions of the break points of PWL maps and cycles lying on the outermost
partitions of their state space. Several reasons justify the focus on these partitions
in the case of CALC. On the one hand, for overcompensatory population maps with
unstable equilibrium the state variable is expected to enter these partitions after a cer-
tain time if the control intensities are high enough. On the other hand, the outermost
partitions are more relevant in cases in which the population size is rather small or
large, respectively corresponding to scenarios close to extinctions or outbreaks. For
the general case of 1D bimodal PWL maps, bifurcation structures associated with
border collisions of invariant sets lying totally or partially on the central partition of
the state space have been deeply studied (see, e.g., [29, 30, 31]). Yet, these results
cannot be applied to CALC since the central branch of the CALC map is assumed
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to be nonlinear. Studying border collisions of invariant sets containing points in the
central partition of CALC and their possible ecological and management implications
is an interesting open problem to be addressed in future research.
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