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Abstract

A few spatiotemporal models of population dynamics are considered in relation to biological invasion and
biological control. The patterns of spread in one and two spatial dimensions are studied by means of
extensive numerical simulations. We show that, in the case that population multiplication is damped by the
strong Allee effect (when the population growth rate becomes negative for small population density), in a
certain parameter range the spread can take place not via the intuitively expected circular expanding
population front but via motion and interaction of separate patches. Alternatively, the patchy spread can
take place in a system without Allee effect as a result of strong environmental noise. We then show that the
phenomenon of deterministic patchy invasion takes place ‘at the edge of extinction’ so that a small change
of controlling parameters either brings the species to extinction or restores the travelling population fronts.
Moreover, we show that the regime of patchy invasion in two spatial dimensions actually takes place when
the species go extinct in the corresponding 1-D system.

Introduction

Biological invasions are currently regarded as a
major threat to biodiversity (Drake et al. 1989;
Parker et al. 1999), agriculture (Pimentel 2002),
fish stocks (Vinogradov et al. 1989, 2000), etc.
The apparent importance of this issue has given
rise to various strategies for the management and
control of invasive species. The effectiveness of
controlling efforts strongly depends on our
knowledge of the main feedbacks in a given eco-
system. In particular, the concept of biological
control is based on the assumption that the im-
pact of certain biological factors can slow down
or block the spread of exotic species. Several fac-
tors have been identified that affect the rate and

pattern of species spread, including environmen-
tal heterogeneity, global climatic change and
large-scale phenomena such as El Niño, impact
of wind or water current, transport and trade,
and others.

From the point of applications to species man-
agement and control, however, it is essential that
controlling factors themselves are manageable.
That imposes certain restrictions. For instance,
the impact of environmental borders is very
effective in blocking species spread (Keitt et al.
2001); however, it is hardly possible to use it as a
practical tool for invasive species control. One
biological factor that can be relatively easily
managed and, at the same time, affects exotic
species spread is predation. A decrease in the
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invasion/colonization rates resulting from an
increase in predation have been observed in field
observations (Fagan and Bishop 2000). Later
theoretical studies indicated that the impact of
predation can block or reverse species invasion
provided that the invasive species is affected by
the Allee effect (Owen and Lewis 2001; Petrovskii
et al. 2005a). As another example, a similar con-
trolling strategy based on a deliberate introduc-
tion of a specialist predator has been also
discussed in connection with the invasion of
Mnemiopsis leidyi in the Black Sea ecosystem
(Vinogradov et al. 1989). Introduction of Beroe
ovata, which finally took place unintentionally a
few years ago has indeed appeared to be very
effective and nearly brought the population of
Mnemiopsis to extinction (Vinogradov et al.
2000).

Another relevant factor that may significantly
affect the spread of invasive species is the influ-
ence of infectious diseases. Although no detailed
theoretical study of the impact of infection on the
rates of spread has as yet been published, there
are a few practical examples of infectious diseases
being used successfully to control an invasion of
exotic species, cf. (Fitzgerald and Veitch 1985;
Courchamp and Sugihara 1999). There is growing
evidence that viral infection can be just as impor-
tant for aquatic species as for terrestrial ones; in
particular, it might accelerate the termination of
phytoplankton blooms (Tarutani et al. 2000; Jac-
quet et al. 2002; Gastrich et al. 2004). However,
not much is yet known about marine viruses and
their role in aquatic ecosystems and the species
that they infect; some information along with a
list of further references can be obtained from re-
views by Fuhrman (1999), Suttle (2000) and
Wommack and Colwell (2000).

Despite considerable recent progress, the
impact of the above factors is still not studied
well enough. Predation and/or infectious diseases
affect invasion rates but they can also change the
whole pattern of spread. It was shown that, as a
result of the interplay between predation and the
Allee effect, the usual invasion scenario when
invasive species spreads over space through prop-
agation of a population wave can change to a
curious regime of patchy invasion (Petrovskii et
al. 2002a, b). In this regime, no continuous trav-
elling front is formed and the species invade via

irregular motion and interaction of separate pop-
ulation patches. Note that this scenario of species
spread is often observed in nature; however, its
origin has not been fully understood so that dif-
ferent authors ascribe it to different mechanisms,
such as environmental heterogeneity (Murray
1989), environmental stochasticity (Lewis 2000;
Lewis and Pacala 2000), etc.

It is likely that this qualitative change in the
pattern of spread from propagation of continu-
ous travelling wave to patchy invasion has signif-
icant ecological implications. Hitherto, however,
these implications have not been investigated in
detail. In particular, it is still unclear whether the
patchy invasion should be linked to a specific
ecological interaction, such as predation, or is a
more general phenomenon. In this paper we con-
sider the patchy invasion arising in the problem
of biological control using a few mathematical
models of population dynamics and epidemiol-
ogy. We first study a separate effect of predation
(cf. Section 2) and infection (Sections 3 and 4)
using simple deterministic models. By means of
extensive computer simulations we show that
invasive species can exhibit deterministic patchy
invasion as a result of increasing pressure from
predatory species or infectious disease. The pat-
chy spread corresponds to the ‘invasion at the
edge of extinction’ so that a small variation of
parameters either restores the usual scenario of
invasion via travelling population waves or
brings the species to extinction. We also show
that the system’s dimensionality is essential: for
the parameter values when the patchy invasion is
observed in the model with two spatial dimen-
sions, the species goes extinct in the correspond-
ing 1-D case. We then proceed to a more realistic
case, in Section 5, considering the joint effect of
predation and infection and also taking into
account environmental noise. Using a model of a
marine food chain as an example, we show that,
under the impact of noise, the patchy spread can
also be observed in a system without Allee effect.

Patchy invasion in a predator–prey system:

a paradigm

In order to study the impact of predation on the
spread of invasive species, we consider the
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spatiotemporal dynamics of a predator–prey sys-
tem described by the following equations:

@Uðr;T Þ
@T

¼ D1r2Uðr;T Þ þ PðUÞ � EðU;VÞ;

ð1Þ

@Vðr;TÞ
@T

¼ D2r2Vðr;TÞ þ jEðU;VÞ �MV

ð2Þ

(Nisbet and Gurney 1982; Murray 1989; Holmes
et al. 1994; Shigesada and Kawasaki 1997) where
U(r,t) and V(r,t) are the concentrations of prey
and predator, respectively, r=(X,Y) is the posi-
tion in space, T is the time, D1 and D2 are the
diffusivities of prey and predator, respectively.
Function P(U) describes the local prey growth
whereas E(U,V) describes predation; M is the
mortality rate of the predator and j the coeffi-
cient of food utilization.

The particular choice of the functions P(U)
and E(U,V) in Equations (1–2) may vary,
depending on the properties of particular species.
In this paper we assume that the local growth of
the prey is damped by the Allee effect:

PðUÞ ¼ 4g

ðK�U0Þ2

 !
UðU�U0ÞðK�UÞ ð3Þ

(cf. Lewis and Kareiva 1993) where K is the prey
carrying capacity and g is the maximum per cap-
ita growth rate. Here U0 can be considered as a
measure of the intensity of the Allee effect: the
lower the value of U0, the less prominent is the
Allee effect. The Allee effect is called ‘strong’
when 0<U0<K; in this case U0 has the meaning
of a ‘threshold’ so that for U<U0 the growth
rate becomes negative. For )K<U0 £ 0, the Al-
lee effect is called ‘weak’, and for U0 £ )K the
Allee effect is absent.

For the predator, we assume that it shows the
Holling type II trophical response:

EðU;VÞ ¼ AUV

Uþ B
ð4Þ

where A describes predation intensity and B is
the half-saturation prey density.

From (1–4), we arrive at the following system:

@Uðr;TÞ
@T

¼ D1r2Uðr;T Þ

þ 4g

ðK�U0Þ2

 !
UðU�U0ÞðK�UÞ � AUV

Uþ B
; ð5Þ

@Vðr;T Þ
@T

¼ D2r2Vðr;TÞ þ j
AUV

Uþ B
�MV: ð6Þ

For convenience of numerical simulations and
also in order to decrease the number of para-
meters, we introduce dimensionless variables:
u=U/K, v=V/(j K), x=X(a/D1)

1/2, y=Y(a/D1)
1/2

and t=aT where a=AjK/B. Then, from Equa-
tions (5–6), we obtain:

@uðx; y; tÞ
@t

¼ @2u

@x2
þ @

2u

@y2

� �
þ buðu� bÞð1� uÞ

� uv

1þ Ku
; ð7Þ

@vðx; y; tÞ
@t

¼ � @2v

@x2
þ @

2v

@y2

� �
þ uv

1þ Ku
�mv ð8Þ

where K=K/B, b=U0/K, b=4gBK/(Aj
(K)U0)

2), m=M/a and �=D2/D1.
Invasion of exotic species usually starts with

species introduction when a number of individu-
als of given species are brought locally into a
new ecosystem. It means that the initial condi-
tion for Equation (7) is most naturally described
by a function of compact support. In particular,
in our numerical simulations we used the follow-
ing initial condition:

uðx;y;0Þ ¼ u0 if x11 < x< x12 and y11 < y< y12;

otherwise uðx;y;0Þ ¼ 0 ð9Þ

where u0 is the initial prey density and parame-
ters x11, x12, y11, y12 define the size of the
infested domain.

The idea to use predation as a ‘tool’ in order
to slow down or block the spread of invasive
species implies that, soon enough after introduc-
tion of given exotic species, a small population of
a relevant predatory species is introduced locally
into the region already inhabited by its prey.
Thus, the corresponding initial condition for
Equation (8) is as follows:
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vðx;y;0Þ ¼ v0 if x21 < x< x22 and y21 < y< y22;

otherwise vðx;y;0Þ ¼ 0 ð10Þ

where v0 is the initial predator density and x21, x22,
y21, y22 are parameters with obvious meaning.

Petrovskii et al. (2002a, b) have shown that,
for certain parameter values, the species spread
described by (7–8) takes place via an unusual
scenario: the evolution of initial conditions
(9–10) leads not to formation of the intuitively
expected continuous circular front but to a curi-
ously shaped, patchy structure. The species inva-
sion then takes place not due to the expansion of
the circular front but due to irregular motion
and interaction of separate patches. It was also
shown that this phenomenon of patchy invasion
is an essential consequence of the strong Allee ef-
fect and that it takes place for various parameter
sets, although different parameters cannot vary
independently. However, the origin of the phe-
nomenon and its implications for population
dynamics remained obscure.

Now, in order to gain a deeper insight into the
phenomenon of patchy invasion, along with sys-
tem (7–8) we consider its one-dimensional reduc-
tion, i.e.,

@uðx; tÞ
@t

¼ @2u

@x2
þ buðu� bÞð1� uÞ � uv

1þ Ku
;

ð11Þ

@vðx; tÞ
@t

¼ � @
2v

@x2
þ uv

1þ Ku
�mv: ð12Þ

Similarly to the 2-D case, the initial species dis-
tribution in the 1-D case is considered as follows:

uðx; 0Þ ¼ u0 for �Du < x < Du;

otherwise uðx; 0Þ ¼ 0;
ð13Þ

vðx; 0Þ ¼ v0 for �Dv < x < Dv;

otherwise vðx; 0Þ ¼ 0
ð14Þ

where Du and Dv give the radius of the initially
invaded domain.

It should be mentioned here that one essential
property of the system with the Allee effect for
prey is that, for any parameter value, there exist

initial conditions that lead to species extinction.
In general, these are the conditions with suffi-
ciently small diameter of initially inhabited
domain and/or sufficiently small value of the ini-
tial prey density. For instance, it can readily be
seen that, in the case that max u(x,y,0)<b, the
species go extinct independently of the other
parameter values. To avoid ambiguity, through-
out this paper we always chose a large enough
initial prey density and/or initial diameter.

Equations (7–8) and (11–12) were solved
numerically by finite differences for a wide range
of parameters. In most cases we used the simple
explicit scheme; however, to avoid numerical arti-
facts, some of the results were reproduced using
more advanced approaches. In particular, for the
1-D system (11–12), an implicit scheme with the
built-in sweeping method was also used, and for
the 2-D system we used an alternate directions
method. Moreover, the sensitivity of the results to
the choice of the mesh steps was checked and the
steps have been chosen to be sufficiently small.
The results shown below were obtained for
Dt=0.1, Dx=Dy=1 for the 2-D problem and for
Dt=0.1, Dx=0.5 for the 1-D problem.

In both 1-D and 2-D cases, the Neumann
‘no-flux’ conditions are placed at the boundary
of the numerical domain. The size of the domain
is chosen large enough so that, during the simu-
lation time, the impact of the boundaries has
been kept as small as possible.

In order to reveal the succession of the regimes
of the system dynamics in response to parameter
changes, we choose predator mortality m as a
controlling parameter and keep all other parame-
ters fixed at certain hypothetical values. Specifi-
cally, we consider the following set of
parameters: K=0.1, b=0.2 and b=2.

It is well-known that, for values of m not too
small, the 1-D system (11–12) demonstrates a
variety of travelling population fronts, see (Mur-
ray 1989; Sherratt et al. 1995; Petrovskii and
Malchow 2000; Sherratt 2001; Petrovskii et al.
2005b) for examples and details, and (Volpert
et al. 1994) for a more rigorous consideration.
The propagating front can be followed either by
a stationary spatially homogeneous species distri-
bution or by irregular spatiotemporal patterns.
The regimes in the corresponding 2-D system
arise as an immediate generalization of the
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regimes observed in the 1-D case. For instance,
instead of two travelling fronts running from the
place of the species introduction (described by
the initial conditions of compact support), in the
2-D system the species spread via an expanding
circular front.

However, the situation changes significantly
when m becomes small enough, a case which cor-
responds to a ‘stronger’ predator and thus to
more intense predation. In this case, in the 1-D
system the invasive species spreads not through
propagation of population fronts but rather

through motion of separate patches or groups of
patches. Figure 1 shows the snapshots of the
population density obtained for m=0.418 and
the initial conditions (13–14) with Du=100,
Dv=20, u0=1.0, v0=0.2. Since the problem is
symmetrical with respect to xfi )x, only one
half of the numerical domain is shown. Remark-
ably, for the same parameter values, the species
spread in two spatial dimensions still takes place
through an expanding front of perfectly circular
shape: Figure 2 shows the 2-D snapshots of the
prey density obtained for the initial conditions
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Figure 1. 1D density of prey (solid curve) and predator (dotted curve) calculated at equidistant moments with Dt=250 for parame-

ters �=1, K=0.1, b=0.2, b=2, m=0.418.
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(9–10) with x11=85, x12=105, x21=85, x22=95,
y11=100, y12=105, y21=95, y22=115 and
u0=1.0, v0=0.2.

A further decrease in m results in species extinc-
tion in the 1-D system. That has a clear biological
implication: the predator becomes strong enough,
it catches up with the spreading prey and brings it
down. Figure 3 shows the 1-D snapshots of the
population density obtained for m=0.410 and the
same initial conditions as in Figure 1.

Surprisingly, for the same parameter values, the
system dynamics in two spatial dimensions does
not lead to species extinction, see Figure 4
(obtained for the same initial conditions as Fig-
ure 3). The species invasion still takes place, but
not through the expanding continuous circular
front as in the previous case. Instead, at any
moment of time, the invaded area has an irregular
shape and can even split into disconnected pat-
ches. A further decrease in m leads to species
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Figure 2. Isoclines of prey density (predator density exhibits similar properties) calculated at equidistant moments with Dt=40 for

parameters of Figure 1. Thick lines correspond to regions with large density gradient and thus show the patch boundary.
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extinction in the 2-D system, just as it happened in
the 1-D system for a somewhat larger value of m.

Note that, in the system (7–8), there is no pre-
scribed spatial heterogeneity (e.g. via coefficients
dependent on space) and the irregularity of the
pattern shown in Figure 4 is self-organized. A
closer inspection shows that the system dynamics
corresponding to the patchy invasion can be
qualified as spatiotemporal chaos (Petrovskii
et al. 2002a; Morozov et al. 2004). This may
account for the apparent asymmetry of the spa-

tial patterns observed for large times, cf. the bot-
tom of Figure 4: since chaos means an intrinsic
instability of the system dynamics, a small per-
turbation due to numerical approximation error
finally results in a considerable discrepancy
between the species distibution in the left-hand
and right-hand parts of the domain.

We want to emphasize that the parameters of
Figure 4 are not at all unique, and a qualitatively
similar pattern of species spread can be observed
for other parameter values as well. We do not
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Figure 3. 1D density of prey (solid curve) and predator (dotted curve) calculated at equidistant moments with Dt=39 for

m=0.410. Other parameters are as in Figure 1.
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show other examples for the sake of brevity. For
K, b and b fixed as above, the regime of patchy
spread can be observed for the values of m from
a short range situated around m=0.418. For
other values of K, b and b, the regime of patchy
invasion can be observed for different m. More-
over, similar effects are observed if we choose
another controlling parameter, e.g. the threshold
density b, and keep other parameters fixed. In

this case, an increase in b (instead of a decrease
in m) eventually leads from species invasion
through propagation of continuous fronts to pat-
chy invasion. Comparative analysis of the simu-
lation results shows that the regime of patchy
invasion in the 2-D model always happens ‘at the
edge of extinction’ so that a further small change
of the controlling parameter, i.e., either m or b,
leads to species extinction in two dimensions too.
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Figure 4. 2-D density of prey (predator density exhibits similar properties) calculated at the moments t=0; t=50; t=150; t=250;

t=350; t=400 (from left to right, from top to bottom) for parameters of Figure 3.

778



The succession of regimes of the system dynam-
ics is outlined in Figure 5. A remarkable and sur-
prising feature of the patchy spread is that the
dynamics of the corresponding 1-D model for the
same parameters leads to species extinction, cf.
Figures 3 and 4.

SI model of epidemic disease

Another possibility of biological control of inva-
sive species is related to the impact of infectious
diseases. In order to address this issue, we start
with one of the simplest models of epidemiology,
namely, with the so-called SI model:

@Sðr; tÞ
@t

¼ @2S

@x2
þ @

2S

@y2

� �
þ bSðS� bÞð1�SÞ �SI;

ð15Þ

@Iðr; tÞ
@t

¼ � @2I

@x2
þ @

2I

@y2

� �
þ SI�mI ð16Þ

(Murray 1989) where S and I are the densities
of the susceptible and infected individuals,
respectively, at moment t and position r=(x,y).
Correspondingly, S+I gives the total population
density of given invasive species. The term SI
describes the disease transmission rate from in-
fected to susceptible individuals. We consider
the case when the disease is sufficiently serious
that infected individuals cannot produce off-
spring and the population can grow only due to
multiplication of susceptibles. For the sake of

brevity, we assume that in Equations (15–16) all
variables are already scaled to dimensionless
values. As above, along with 2-D SI model, we
consider its one-dimensional analogue; the cor-
responding equations are not shown for the
sake of brevity.

Note that, from the mathematical aspect, the
system (15–16) is not just a particular case of
Equations (7–8) corresponding to K=0. The
decrease from K>0 to K=0 corresponds to a
certain structural change: instead of strong non-
linearity uv/(1+Ku), we now have a bilinear term
which corresponds to the classical Lotka–Volter-
ra model. It is well-known that the dynamics of
the model with bilinear interaction term and with
Holling type II can differ in many aspects, cf.
(Murray 1989).

According to the corresponding idea of biolog-
ical control, in order to prevent the spread of a
harmful species, at an early stage of invasion a
number of individuals are deliberately infected by
a certain lethal disease, cf. (Courchamp and
Sugihara 1999; Fitzgerald and Veitch 1985).
Thus, the initial conditions in the form (9–10) for
2-D system and (13–14) for 1-D system are still
appropriate, with the appropriate change of
notation.

The system (15–16) has been thoroughly stud-
ied by means of numerical simulations. We find
that the succession of the regimes in response
to a change in a controlling parameter, either m
or b, is similar to the ones observed for the
predator–prey system. In the 1-D system, a
decrease in m first changes the pattern of dis-
ease spread via propagation of travelling fronts
to motion of separate patches. In two spatial
dimensions, however, it still corresponds to the
disease spreading via expansion of a continuous
front of perfectly circular shape. A further
decrease in m fully eradicates the species in the
1-D model but leads to its patchy spread in
two dimensions. For smaller m the species goes
extinct. Thus, again, the patchy spread gives a
scenario of species/infection spread at the edge
of extinction. For the sake of brevity, we do
not show the corresponding figures here; details
can be found in (Petrovskii and Venturino
2004).

Note that, although the succession of dynami-
cal regimes described above when a decrease in

Invasion through
propagation of
continuous
travelling fronts 

Predation 

Extinction 

Patchy invasion 

Figure 5. Invasion at the edge of extinction: sketch of system

dynamics.
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m eventually leads to species extinction may seem
to be somewhat counter-intuitive, it is in full
agreement with biological arguments. Indeed, the
dimensionless parameter m gives, up to a certain
factor, a ratio of the infected mortality rate and
the transmission rate. A decrease in m thus cor-
responds to an increase in the transmission rate
which tends to make disease more dangerous.

Patchy spread in SIR model

In the previous section, we have shown that the
regime of patchy spread of invasive species can
arise in response to controlling efforts based on
the introduction of a certain infectious disease.
The patchy invasion in this case has exactly the
same implication as in the predator–prey system:
it describes the scenario of spatial spread at the
edge of extinction so that a further small change
of the controlling parameter leads to species
extinction. As well as in the case of the predator–
prey model, for the parameters when the patchy
spread takes place in two spatial dimensions, in
the 1-D model the species goes extinct.

The results of the previous section inspire us to
look now at the dynamics of a more complicated
epidemiological model. In this section we con-
sider the spatiotemporal dynamics of an infec-
tious disease described by the following
equations:

@Sðr; tÞ
@t

¼ @2S

@x2
þ @

2S

@y2

� �
þ buðS� bÞð1� SÞ

� SIþ aIþ dR; ð17Þ

@Iðr; tÞ
@t

¼ @2I

@x2
þ @

2I

@y2

� �
þ SI�mI� aI� rI;

ð18Þ

@Rðr; tÞ
@t

¼ � @2R

@x2
þ @

2R

@y2

� �
þ rI� dR� xR

ð19Þ

(so-called SIR model) where S is the density of
the susceptible individuals of given population, I
is the density of infected and R is the density of
removed individuals at the position r=(x,y) and
time t. Equations (17–19) are already scaled to

dimensionless values. As in the case of the SI
model, we assume that only the susceptibles can
produce offspring.

Obviously, the SIR model is more complicated
than the SI model and contains many more
mechanisms and scenarios of disease develop-
ment. Moreover, it allows a somewhat different
biological interpretation. For instance, R can be
treated as the density of individuals that recov-
ered from the disease but cannot become suscep-
tible again, e.g., because they become immunized.
In this case, I gives the density of sick individuals.
Alternatively, R can be treated as the density of
sick individuals; in this case I gives the density of
the individuals who have the disease in the latent
stage. More details and further references can be
found in (Diekmann and Heesterbeek 2000;
Hethcote 2000).

Typical results of computer simulations using
the SIR model are shown in Figures 6–11. We
use the initial conditions of the same type as gi-
ven by (9–10) (with obvious change of notation)
and assume that at the beginning of the disease
spread the removed subpopulation is absent, i.e.,
R(x,y,0)=0. As above, along with the 2-D sys-
tem (17–19) we consider its 1-D reduction. In
that case, the initial conditions for S and I are
given by (13–14).

Since the SIR model has additional feedbacks,
e.g. through possible recovery of the removed
individuals, cf. the last terms in Equations (17)
and (19), the system response to variation of the
mortality m of infected is somewhat more com-
plicated than it is in the SI model. For that rea-
son, in our search for the regime of patchy
spread, it appears more convenient to vary b, not
m, and to keep all other parameters fixed. For
numerical simulations, we chose the following
hypothetical values: �=0.5, a=0, b=4, d=0.1,
m=0, x=0.8, r=0.5. In our choice of parame-
ter values we are more inclined to consider R as
the density of sick subpopulation and I as the
latent subpopulation, which is why we neglect
the mortality rate of infected individuals and
choose �<1. We ought to mention, though, that
the assumption m=0 is not a principal restric-
tion. While large values of m can indeed change
the system properties significantly, for m positive
but small the dynamics remains qualitatively the
same as for m=0.
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For the 1-D case the species spread from the
place of original introduction occurs through
propagation of a travelling population front, for
sufficiently small values of b, in the same way as
it takes place for the predator–prey and SI mod-
els considered above. The species distribution
behind the front can be either homogeneous and
stationary or patchy and transient, depending on
b. In all those cases, the species spread in the
corresponding 2-D system takes place through an
expanding population front of circular shape.

For somewhat larger b the regime of spread in
1-D system turns to propagation of separate pat-
ches, or groups of patches. Figure 6 shows the
1-D snapshots of the species density (solid curve
for susceptibles, dashed for infected, dashed-and-
dotted for removed) obtained for b=0.26 (for
the initial conditions DS=100, DI=20, S0=1.0,
I0=0.2). Remarkably, for the same value of b
the species spread in the 2-D system still takes
place through an expanding circular front, see
Figure 7 (for the initial conditions x11=130,
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Figure 6. 1-D density of susceptibles (solid curve), infected (dotted curve) and removed (dashed-and-dotted line) calculated in the

SIR model at equidistant moments with Dt=250 for parameters �=0.5, b=0.26, a=0, b=4, d=0.1, m=0, x=0.8, r=0.5.
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x12=155, x21=130, x22=145, y11=145, y12=165,
y21=145, y22=160, S0=1.0, I0=0.2).

A further increase in b leads to species extinction
in the 1-D system, see Figure 8 obtained for
b=0.27 and the same initial condition as in Fig-
ure 6. In the 2-D system, for the same parameter
values, the evolution of the initial conditions does
not lead to species extinction but to its spread, al-
though the form of the front is no longer circular
and continuous, see Figure 9. Larger values of b
make the patchiness of the spatial pattern even
more distinct, see Figures 10 and 11 obtained for
b=0.273 and b=0.274, respectively. Furthermore,
the rate of spread becomes much lower with an in-
crease in b, cf. Figures 9 and 11. These results con-
firm our hypothesis that the regime of patchy
spread provides a mechanism for the species to per-
sist and even to invade at the edge of extinction.

Surprisingly, a further increase in b does not
immediately lead to species extinction in two

dimensions but first to formation (in the large
time frame, asymptotic) of stationary patchy dis-
tribution of the species. Figure 12 shows the 2-D
snapshots of the species density obtained for
b=0.275. After the transient stage, which takes a
considerable time, t . 1500, a few stationary
patches of the population density appear, see the
bottom of Figure 12. Calculations performed for
larger time confirm that the patches remain
stationary.

We should to mention that the regime of
formation of stationary patchy patterns in the
SIR model can be observed for other parame-
ter values too, although the number of patches
can be different. For instance, for b=0.276,
evolution of the same initial conditions as in
Figures 9 to 12 lead to formation of only two
stationary patches. In turn, the choice of the
initial conditions can affect both the number of
patches and their position.

Figure 7. 2-D density of infected calculated in the SIR model at moments t=0; t=100; t=200; t=400 (from left to right, from top

to bottom) for the same parameters as in Figure 6. Except for the very early stage of the system dynamics, the density of suscepti-

bles and removed exhibits similar properties.
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Patchy spread in a stochastic model of virally

infected phytoplankton and zooplankton

Mathematical models of the dynamics of virally
infected phytoplankton populations are relatively
rare. The by now classic publication is by Beltrami
and Carroll (1994); a more recent work is that of
Chattopadhyay and Pal (2002) and Chattopad-
hyay et al. (2003). The latter papers deal with lytic
infections and mass action incidence functions
(Nold 1980; Dietz and Schenzle 1985; McCallum

et al. 2001). Meanwhile, the role of lysogeny re-
mains largely obscure. While a lytic infection leads
to the loss of reproduction and eventual destruc-
tion of the host cell, a lysogenic infection implies a
certain strategy: the viruses integrate their genome
into the host’s genome so that reproduction of the
host also results in virus reproduction (Jiang and
Paul 1998; Ortmann et al. 2002).

The spatial aspect of infected populations has
also been investigated relatively infrequently. Much
has been published about the spatiotemporal
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Figure 8. 1-D density of susceptibles (solid curve), infected (dotted curve) and removed (dashed-and-dotted line) calculated in the

SIR model at equidistant moments with Dt=52.5 for b=0.27. Other parameters are as in Figure 6.
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self-organization in prey–predator communities,
modelled by reaction-diffusion(-advection) equa-
tions, cf. (Medvinsky et al. 2002) for an extensive
list of references. Much less is known about equa-
tion-based modelling of the spatial spread of epi-
demics; a small collection of papers includes
Grenfell et al. (2001), Abramson et al. (2003), Lin et
al. (2003) and Zhdanov (2003).

In this section, the focus is on modelling the
influence of lysogenic infections and proportion-
ate mixing incidence function (frequency-depen-
dent transmission) on the spatial spread of
interacting phytoplankton and zooplankton. The
impact of multiplicative noise (Allen 2003;
Anishenko et al. 2003) is considered as well in
order to make the model more realistic.

Figure 9. 2-D density of infected calculated in the SIR model at the moments t=0; t=100; t=200; t=400; t=500; t=600 (from

left to right, from top to bottom) for the same parameters as in Figure 8.
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The model by Scheffer (1991) for the prey–
predator dynamics of phytoplankton u and zoo-
plankton v is used as the starting point. It reads
in time t and two spatial dimensions r=(x, y)
with dimensionless quantities, scaled following
Pascual (1993)

@u

@t
¼ cu 1� uð Þ � auv

1þ bu
þ dr2u; ð20Þ

@v

@t
¼ auv

1þ bu
�m3vþ dr2v: ð21Þ

Figure 10. 2-D density of infected calculated in the SIR model at the moments t=0; t=200; t=400; t=700; t=1000; t=1300

(from left to right, from top to bottom) for b=0.273. Other parameters are as in Figures 8 and 9.
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Here the phytoplankton grows logistically with
intrinsic rate c and Holling-type II grazing with
maximum rate a; the zooplankton has a natural
mortality with rate m3. The growth rate c is scaled
as the ratio of local rate cloc and spatial mean<c>.
The dimensionless diffusion coefficient d describes
eddy diffusivity: it must therefore be equal for both
species. The dynamics of a top predator, i.e., plank-

tivorous fish, is neglected because the focus is on the
influence of virally infected phytoplankton.

The phytoplankton population u is split into a
susceptible part u1 and an infected portion u2.
Zooplankton is renamed u3 in order to attain
symmetry in notation. Then, the model system
for symmetric inter- and intraspecific competition
of susceptibles and infected reads

Figure 11. 2-D density of infected calculated in the SIR model at equidistant moments with Dt=500 (from left to right, from top

to bottom) for b=0.274. Other parameters are as in Figures 8–10.
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@uiðr; tÞ
@t

¼ fi uðr; tÞ½ � þ dr2uiðr; tÞ; i ¼ 1; 2; 3; ð22Þ

where

f1 ¼ c1u1 1� u1 � u2ð Þ

� au1u3
1þ bðu1 þ u2Þ

� k
u1u2

u1 þ u2
;

ð22aÞ

f2 ¼ c2u2 1� u1 � u2ð Þ

� au2u3
1þ bðu1 þ u2Þ

þ k
u1u2

u1 þ u2
�m2u2;

ð22bÞ

f3 ¼
aðu1 þ u2Þu3
1þ bðu1 þ u2Þ

�m3u3: ð22cÞ

Figure 12. 2-D density of infected calculated in the SIR model at equidistant moments with Dt=500 (from left to right, from top

to bottom) for b=0.275. Other parameters are as in Figures 8–11.
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Proportionate mixing with transmission coeffi-
cient k as well as an additional disease-induced
mortality of infected (virulence) with rate m2 are
assumed. The vector of population densities is
u=(u1,u2,u3). In the case of lytic infection, the
first term on the right-hand side of Equation
(22b) would describe the losses due to natural
mortality and competition. Here, lysogenic infec-
tions with c1=c2=c will be considered.

For m2 > k, the infected go extinct, for m2

< k, the susceptibles do. In the case of m2=k,
susceptibles and infected coexist (endemic
states). Because of the symmetry of the growth
terms of susceptibles and infected, the initial
conditions determine their final dominance in
the endemic state, i.e., if u1(t=0) > u2(t=0)
then u1(t) > u2(t) " t. The prevalence i=u2(t)/
(u1(t)+u2(t)) remains constant (Malchow et al.
2004).

Furthermore, multiplicative noise is introduced
in Equations (22) in order to study environmen-
tal fluctuations, i.e.,

@uiðr; tÞ
@t

¼ fi uðr; tÞ½ � þ dr2uiðr; tÞ

þ xi uðr; tÞ½ � � niðr; tÞ; i ¼ 1; 2; 3; ð23Þ

where ni(r,t) is a spatiotemporal white Gaussian
noise, i.e., a random Gaussian field with zero
mean and delta correlation

hniðr; tÞi ¼ 0; hniðr1; t1Þniðr2; t2Þi
¼ dðr1 � r2Þdðt1 � t2Þ; i ¼ 1; 2; 3:

ð23aÞ

xi[u(r,t)] is the density dependent noise intensity.
The stochastic modelling of population dynamics

requires this density dependence, i.e., multiplica-
tive noise. Throughout this paper, it is chosen as

xi uðr; tÞ½ � ¼ xuiðr; tÞ; i ¼ 1; 2; 3; x ¼ const:

ð23bÞ

We consider the spatiotemporal dynamics of
the plankton model (23), i.e., zooplankton, graz-
ing on susceptible and virally infected phyto-
plankton, under the influence of environmental
noise and diffusing in horizontally two-dimen-
sional space. The diffusion terms have been inte-
grated using the semi-implicit Peaceman–
Rachford alternating direction scheme, cf. Tho-
mas (1995). For the interactions and the Straton-
ovich integral of the noise terms, the explicit
Euler–Maruyama scheme has been applied
(Kloeden and Platen 1992; Higham 2001). Peri-
odic boundary conditions have been chosen for
all simulations.

The initial conditions are localized patches in
empty space, and they are the same for determin-
istic and stochastic simulations. Two initial con-
figurations have been considered and they can be
seen in Figures 13 and 15. In the first case, cf.
Figure 13, there are two patches, one with zoo-
plankton surrounded by susceptible phytoplank-
ton (upper part of the model area) and one with
zooplankton surrounded by infected ones (on the
right of the model area). In the second case, cf.
Figure 16, there is a central patch of all three spe-
cies; inside this patch the susceptibles are ahead
of infected which are ahead of zooplankton.

The simulation results are shown in Figures 14
and 16 which were obtained for the initial condi-
tions shown in Figures 13 and 15, respectively.
The first two rows show the dynamics of the

Figure 13. Initial conditions for the simulations in Figure 14. Upper left patch: Zooplankton surrounded by susceptibles. Lower

right patch: Zooplankton surrounded by infected.
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Figure 14. Invasion and spatial coexistence of infected (two middle rows) and zooplankton (two lower rows). Extinction of suscep-

tibles (first row) without noise. Survival and patchy invasion of susceptibles for x=0.25 noise intensity (second row). Parameters

are: m2=0.2 < K=0.21, m3=0.5, d=0.05.
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susceptibles for deterministic and stochastic con-
ditions, the two middle rows show the infected
and the two lower rows the zooplankton. In both
figures, this special initial configuration leads at
first to the propagation of concentric waves for
the deterministic case in rows 1, 3 and 5. For the
stochastic case in rows 2, 4 and 6, these waves
are immediately blurred and only a leading diffu-
sive front remains. The grey scale of the figures
changes from high population densities in dark
colour to vanishing densities in white.

In Figure 14, it can be observed that the suscepti-
bles go extinct in the deterministic case for m2 < k.
Any supercritical environmental fluctuation could
initiate the switch to the lytic viral replication cycle,
and all populations would go extinct. However, the
noise enhances the survival and patchy invasion of
susceptibles even under unfavourable conditions,
cf. the second row in Figure 14.

In Figure 16, one can see the final spatial coex-
istence of all three species for m2=k. The deter-
ministic simulations yield the dynamic
stabilization of the locally unstable focus in space
and a long plateau is formed with a leading diffu-
sive front ahead, cf. (Petrovskii and Malchow
2000; Malchow and Petrovskii 2002). Further-
more, in the purely deterministic case the infected
are somehow trapped in the center and go almost
extinct. The noise enhances the ‘escape’, survival
and patchy invasion of the infected, cf. the fourth
row in Figure 16.

Conclusions

In this paper we have revisited the phenomenon
of patchy invasion which was observed earlier in
(Petrovskii et al. 2002a, b). The patterns of pat-

chy spread in nature are usually attributed either
to environmental heterogeneity (cf. Murray 1989)
or to environmental stochasticity (Lewis 2000;
Lewis and Pacala 2000). In contrast, we have
shown that the patchy spread of an exotic species
can take place in a homogeneous environment
and regardless of the existence/importance of sto-
chastic factors. In a purely deterministic system,
the patchy invasion can arise as a ‘response’ of
the invasive species to the measures of biological
control based on intentional introduction of a
specialist predator or infection disease, provided
that the local population growth of the exotic
species is damped by the strong Allee effect.

By means of extensive numerical simulations
(only a small number of them are shown in
Figures 1–4, 6–11), the following facts have
been proved:

1. Patchy invasion must not be associated with a
specific model but should be regarded as a
more general phenomenon that can be ob-
served in various systems of population
dynamics and epidemiology;

2. Patchy invasion is a mechanism of species
spread ‘at the edge of extinction’: a small
change of controlling parameters can bring gi-
ven invasive species to extinction;

3. For those parameter values when the patchy
invasion takes place in the 2-D system, in
the corresponding 1-D system the species go
extinct.

The impact of stochastic factors can signifi-
cantly modify the system’s spatiotemporal
dynamics, see e.g. (Malchow et al. 2002, 2004).
In the model of virally infected plankton, the
ratio of virulence and infection transmission rate
controls coexistence, survival or extinction of

Figure 15. Initial conditions for the simulations in Figure 16. Zooplankton surrounded by infected surrounded by susceptibles.
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Figure 16. Spatial coexistence of susceptibles (two upper rows), infected (two middle rows) and zooplankton (two lower rows).

Trapping and almost extinction of infected in the center (third row) without noise. With x=0.25 noise intensity noise-enhanced

survival and patchy invasion of infected (fourth row). Phenomenon of dynamic stabilization of a locally unstable equilibrium (first

and fifth row).The definition of the subfigures in the third row is sharpened three times, in the fourth row two times. Parameters

are: m2=K=0.2, m3=0.625, d=0.05.
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susceptibles and infected in a non-fluctuating
environment. A sufficiently large environmental
noise enhances the survival and the patchy spa-
tial spread of the ‘endangered’ species. Stochas-
ticity relaxes the conditions for patchy invasion
so that it can also be observed in a system with-
out Allee effect. If considered in a wider ecologi-
cal perspective, the latter conclusion seems to be
congenial to the results obtained by Lande (1998)
who showed that the Allee effect can originate in
the stochasticity inherent in populations at small
density. In general, however, the interplay
between deterministic and stochastic factor and
its impact on the dynamics of invasive popula-
tions is not well understood yet. This problem
will become a subject of future studies.
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