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Abstract Invasive species are a significant cause of bio-diversity loss particularly in is-
land ecosystems. It has been suggested to release pathogenic parasites as an efficient con-
trol measure of these mostly immune-naïve populations. In order to explore the potential
impacts of such bio-control approach, we construct and investigate mathematical mod-
els describing disease dynamics in a host population that acts as a predator embedded in
a simple food chain. The consequences of Feline Immunodeficiency Virus (FIV) intro-
duction into a closed ecosystem are addressed using a bi-trophic system, comprising an
indigenous prey (birds) and an introduced predator (cats). Our results show that FIV is
unlikely to fully eradicate cats on sub-Antarctic islands, but it can be efficient in depress-
ing their population size, allowing for the recovery of the endangered prey. Depending on
the ecological setting and disease transmission mode (we consider proportionate mixing
as well as mass action), successful pathogen invasion can induce population oscillations
that are not possible in the disease-free predator–prey system. These fluctuations can be
seen as a mixed blessing from a management point of view. On the one hand, they may
increase the extinction risk of the birds. On the other hand, they provide an opportunity to
eradicate cats more easily in combination with other methods such as trapping or culling.
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1. Introduction

Invasive species are a leading threat to bio-diversity (Lockwood et al., 2007; Wilcox
and Donlan, 2007). Together with habitat degradation and human-driven atmospheric and
oceanic alterations, biotic invasions are seen as major agents of global change (Mack et
al., 2000; Chornesky and Randal, 2003; but see Gurevitch and Padilla, 2004 and Didham
et al., 2005 for a different view).

Islands and insular-type of environments in particular are highly susceptible to invasion
(Sax and Brown, 2000). Many introduced species are extremely adaptable and often find
exceptionally good conditions on islands, where they are normally free from their natural
competitors, predators, parasites, and pathogens (Dobson, 1988; Sax and Brown, 2000;
Bax et al., 2001). In face of invaders, native species may be put at danger and are fre-
quently driven to extinction (Moors and Atkinson, 1984), as they are not likely to have
evolved defences against mainland predators and grazers accidentally or deliberately in-
troduced (Krajick, 2005). More than 90% of species extinctions since 1600 have been
island forms (Atkinson, 1989).

Control programmes, and eradication whenever possible, are largely regarded as the
favoured way to solve the problems posed by invaders and to restore the ecosystem
(Atkinson, 1988; Zavaleta et al., 2001). Biological control measures, and the introduc-
tion of pathogens in particular, are viewed as promising alternatives to time-consuming,
costly and usually labour-intensive classical methods, such as culling and trapping pro-
grammes, especially on remote or uninhabited islands (Courchamp and Sugihara, 1999;
Cleaveland et al., 1999). However, the introduction of pathogens in an ecosystem requires
accurate impact studies, in order to insure that the pathogen (i) will not have adverse ef-
fects (like spreading to natives) and (ii) will result in the removal or at least significant
control of the target species. The choice of suitable pathogens is of crucial importance,
calling for both empirical and theoretical studies.

This paper is motivated by Courchamp and Sugihara (1999). They aim to model
the effectiveness of virus introduction as biological control of invasive cats. Domes-
tic cats are among the most notorious and damaging predators introduced in insular
ecosystems (Nogales et al., 2004). For example, five cats introduced to Marion Is-
land in 1949 resulted in a population of more than 2,000 cats 25 years later, deplet-
ing nearly half a million burrowing petrel per year. They caused the extinction of the
Common Diving Petrel (Pelecanoides urinatrix) and severely affected some species of
hole-nesting petrels (Procellariidae) (Van Aarde, 1980; Van Rensburg and Bester, 1988;
Nogales et al., 2004). In the same period, a population of five cats introduced to the Ker-
guelen Islands grew to several tens of thousands, and is now estimated to kill more than
three million seabirds per year (Chaphuis et al., 1994). The control of invasive cats there-
fore is a particular concern.

The model formulation in Courchamp and Sugihara (1999), however, is problematic,
which can invalidate the authors’ conclusions (cf. Section 2). We therefore develop new
mathematical models that describe virus spread in a specialist predator host population
and the potential impact on both predator and prey species. Cats and seabirds are used as
predator–prey examples, but other interactions could be chosen instead, since our models
are simple and general. Throughout this paper, we will use the terms predators and cats
as well as prey and birds interchangeably.
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We will focus on the Feline Immunodeficiency Virus (FIV) and its potential ef-
fects in a simple bi-trophic food chain of invasive cats and native seabird populations.
The risks and limitations of using pathogens as bio-control agents are well recog-
nised (Strong and Pemberton, 2000). However, FIV introduction seems to be a suit-
able and promising measure for several reasons. First, FIV is highly host-specific.
Pathogen mutation and spread to other species thus seem relatively unlikely (Cleave-
land et al., 1999). Second, FIV has a low virulence. This is thought to be better for
ongoing transmission of the control agent within the host population (Dobson, 1988;
Courchamp and Sugihara, 1999). A highly virulent virus, meaning that it kills the host
rapidly, could become self-limiting, as observed on Marion Island. Feline Panleucopae-
nia Virus (FPLV) was introduced in 1977, upon which the cat population decreased from
an estimated 3,409 to 615 cats in 1982 (Van Rensburg et al., 1987). However, at that
time FPLV was no longer spreading effectively, and the population managed to recover.
A complement of intensive trapping and poisoning was necessary to fully eradicate the
cat population (Bester et al., 2002). FIV, on the contrary, persists for a long time before
killing its host, allowing for multiple virus transmissions during the host’s lifetime. As
a consequence, the impact of this virus is expected to be higher on islands where cats
may live 2–3 times longer than mainland populations (Courchamp et al., 2000). Third,
FIV infects and kills predominantly individuals with high reproductive rates and survival
probabilities (Courchamp et al., 1998), suggesting that it might be very efficient in con-
trolling host population growth. The reasons pointed out make FIV a likely candidate for
control programmes of invasive cats.

In comparison with the original study by Courchamp and Sugihara (1999), we use a
substantially different approach in predator modelling, based on the principle of trophic
coupling. Moreover, the functional response does depend on the prey density. This re-
solves the flaws of the original model, but keeps the new models still simple. We can
find estimates for most of the parameters in the literature; the remaining ones are varied
continuously to explore their potential impact. In the original study, some choices of pa-
rameter values appear arbitrary. Our results will demonstrate the possibility that pathogen
release may destabilise the populations. This scenario was not recognised in the original
model and we will discuss it in depth with related models considering disease spread in
predator populations.

In addition, we take into account two different disease transmission patterns between
individuals. Transmission is the driving force behind the dynamics of any infectious dis-
ease (Begon et al., 2002). The incidence depends on the spatial and social structure of the
host, since it is a relation between population size, measured as a number or a density,
and the rate of contact leading to disease transmission (Fromont et al., 1998). The dy-
namics of models developed to design strategies for managing disease threats to humans
or animals, is thus greatly affected by the way in which transmission between infected
and susceptible hosts is modelled (McCallum et al., 2001). We employ two different inci-
dence functions that have been traditionally used. The first one assumes that the contact
rate between hosts is constant (proportionate mixing transmission, also called frequency-
dependent transmission or standard incidence), and the other one assumes that it in-
creases directly with host population size (mass action transmission, also called density-
dependent transmission). Both assume that the host population is homogeneously mixed.
However, they are considered to be two modelling extremes in a continuum of possibilities
(McCallum et al., 2001).
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The remainder of this paper is organised as follows. Section 2 presents a brief overview
of previous theoretical models on this subject. Section 3 introduces our models and their
assumptions. In Sections 4 and 5, we present the results of this study, first the equilibria
of each model and their local stability, and then the impact analysis of virus introduction.
Finally, in Section 6, we discuss our models and results and draw conclusions important
for alien species control and management.

2. Existing mathematical models

Mathematical modelling has much to offer to biological control. Models appear as
useful and valid alternatives to risky and time-consuming field experiments. They al-
low the identification of critical processes and parameters that drive the dynamics of
species interactions. Their broad and often simple, yet insightful, conclusions can be
of great value in planning future biological control programmes (Waage and Great-
head, 1988). In the past, theoretical models have focused on the use of arthropod nat-
ural enemies, especially parasitoids. Then models for the use of pathogens have been
explored. In the 1980s, modelling efforts toward the understanding of the dynamics of
insect–pathogen interactions developed (e.g. Anderson and May, 1981; Anderson, 1982;
May and Hassell, 1988). Recent theoretical advances show how useful ecological theory
can be in biological control (Murdoch and Briggs, 1996).

The original model by Courchamp and Sugihara (1999) is based on an underlying
predator–prey model. In the absence of disease, it can be described by the following pair
of ordinary differential equations:

dN

dT
= rNN

(
1 − N

K

)
− μP, (1)

dP

dT
= rP P

(
1 − P

(N/μ)

)
, (2)

where N(T ) and P (T ) denote the number of individuals at time T in the prey and preda-
tor populations, respectively; K is the carrying capacity of the prey’s environment (mea-
sured in individuals); rN and rP are the intrinsic growth rates of the prey and predators,
respectively (measured in time−1); and μ is the predation rate. The model is flawed for
the following reasons:

• First of all, the model is dimensionally incorrect. Parameter μ is measured in time−1 in
Eq. (1) and is dimensionless in Eq. (2).

• Moreover, for N ≡ 0, the time–derivative describing the rate of change of the prey
population (Eq. (1)) becomes negative when predators are introduced (P > 0). This
leads to negative population sizes, which does not make biological sense. Also, note
that Eq. (2) is not defined for N ≡ 0.

Hence, despite its heuristic value, the model is ill-posed and the conclusions based upon
it cannot be taken for granted. Furthermore, the model has the following drawbacks:

(1) The functional response of the predators (the number of prey each predator consumes
per unit time) is constant. Each predator is assumed to consume a fixed number of prey
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per unit time—regardless of the size of the prey population, which appears unrealistic.
This and the following point have also been remarked by Fan et al. (2005).

(2) The model precludes the possibility of oscillatory dynamics. Although we are not
aware of oscillations in cat or bird populations on oceanic islands, regular fluctua-
tions are often observed in predator–prey communities (e.g. Turchin, 2003), and their
absence may be viewed as a model limitation.

(3) The type of predator–prey relationship violates the biomass conversion principle,
which states that the rate of reproduction of predators is uniquely determined by their
functional response (Ginzburg, 1998; Turchin, 2003).

The model most similar to the one presented here is by Hilker and Schmitz (2008).
Their starting point is the classical Rosenzweig–MacArthur (1969) model for the un-
derlying predator–prey system, which they couple with a simple disease model that has
been suggested for FIV spread (Courchamp et al., 1995). The functional response of the
predators is of Holling-type II, which resolves all the drawbacks (1)–(3) listed above.
Other predator–prey models accounting for disease spread in the predator population can
be found in Anderson and May (1986), Venturino (1994), Han et al. (2001), Venturino
(2002), Xiao and Van Den Bosch (2003), Fenton and Rands (2006), Haque and Venturino
(2007) and Auger et al. (2009); see also the review by Hatcher et al. (2006).

In this paper, we choose an underlying predator–prey model of Lotka–Volterra type.
The advantage is that this model has one parameter less (namely the prey-handling time).
It is difficult to find estimates of this parameter in the literature. Therefore, our “step back”
to the Lotka–Volterra predation submodel allows us to bypass this problem and to use pa-
rameter values that can be considered realistic (cf. Section 3.2). While the Lotka–Volterra
model does not allow for predator–prey oscillations, we will find that the introduction of
disease can trigger population cycles.

As already mentioned, Courchamp et al. (1995) construct a model to study FIV circu-
lation in populations of domestic cats. Other viruses such as the Feline Leukaemia Virus
(FeLV) and FPLV are also the subject of theoretical studies on the dynamics of disease
spread among feline hosts (Fromont et al., 1998 and Berthier et al., 2000, respectively).
Regarding the parvovirus FPLV, the latter authors conclude that it is unable to eradicate an
exponentially growing population of cats with the characteristic of the Marion Island pop-
ulation, which is in agreement with field observations. Neither of these models, however,
considers the impact of the bio-control agent introduction on a prey population.

3. Model descriptions

3.1. Eco-epidemiological models

This section introduces the mathematical models, which combine two sub-models,
namely one describing the predator–prey dynamics of cats and birds and the other one
describing disease spread within the cats. These types of coupled models are also called
eco-epidemiological models. Figure 1 shows a corresponding transfer diagram.

We begin with the simple Lotka–Volterra predation model (Volterra, 1931)

dN

dT
= rN

(
1 − N

K

)
− μNP, (3)
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Fig. 1 Transfer diagram of the eco-epidemiological model in terms of susceptible and infected predators
and the prey, cf. equations (3), (5) and (6).

dP

dT
= aμNP − dP, (4)

where N(T ) and P (T ) denote the population size of the prey (birds) and predators (cats),
respectively, at time T . The prey population has an intrinsic per-capita growth rate r and a
carrying capacity K . The functional response of predators is linear with predation rate μ

per capita and unit prey. The predator population has a per-capita mortality rate d and a
trophic conversion efficiency a.

For the spread of the infectious disease within the predator population, we assume
that FIV splits the cats into a susceptible (S) and an infected (I ) part without recovery or
immunity, i.e. P = S + I . This follows Courchamp et al. (1995), where there is only one
stage of illness combining all five stages of FIV: acute, seropositivity, PGL, ARC, and
AIDS stages. Infected individuals suffer an additional disease-induced death rate δ (also
referred to as virulence) and their predatory behaviour is not altered due to disease. There
is no vertical transmission. Hence, the predator Eq. (4) is replaced by the following two
differential equations:

dS

dT
= aμNP − dS − Θ(P )

SI

P
, (5)

d I

dT
= Θ(P )

SI

P
− dI − δI. (6)

Θ(P ) is the effective contact rate leading to disease transmission. If the contact rate be-
tween predator individuals is constant (Θ(P ) = βPM), the incidence is of proportionate
mixing type. If the contact rate between predator individuals increases linearly with pop-
ulation size (Θ(P ) = βMAP ), the incidence is of mass action type. The former has been
suggested in the original FIV model by Courchamp et al. (1995), whereas there are con-
ditions in which the latter is appropriate (Fromont et al., 1998; Hilker et al., 2009).

It can be advantageous to rewrite the model equations for S and I in P and i state
variables, with i being the prevalence of the disease, i.e. i = I/(S + I ). This allows to
distinguish disease-induced extinction from the trivial equilibrium and to deal with the
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singularity at S = I = 0 (the denominator of the PM transmission term becomes zero) as
well. Moreover, this choice of state variables usually preserves a handy equation for the
total host population.

Introducing dimensionless variables, the number of parameters can be reduced from
seven to four, thus simplifying analytical investigations. Choosing B = N/K , C = Pμ/r

and t = rT , we obtain

dB

d t
= B(1 − B) − BC, (7)

dC

d t
= eBC − mC − αCi, (8)

d i

d t
= ([

Γ (C) − α
][1 − i] − eB

)
i, (9)

where

Γ (C) = βPM

r
= σPM and Γ (C) = βMA

μ
C = σMAC (10)

for proportionate mixing and mass action transmission, respectively, and

e = aμK

r
, m = d

r
, α = δ

r
. (11)

Our models are described by the three Eqs. (7), (8), and (9). We will refer to the
system with proportionate mixing and mass action transmission as PM and MA model,
respectively.

3.2. Parameter values for the birds–cats–FIV system

We have used numerical values for the parameters that appear to be biologically accept-
able, even though somewhat arbitrary. Our goal in the equilibria and stability analysis
(Section 4) is to capture major dynamical features. However, when addressing the po-
tential impact of FIV introduction in simple island ecosystems (Section 5), we resort to
parameter values published in the literature. Since this work is not concerned with sea-
sonal fluctuations, short-term behaviour or variation over space, we focus on intermediate
values in the range of estimates made available in the literature, in order to represent aver-
age behaviour across time and space. Table 1 summarises the values used for the dimen-
sional parameters, along with the corresponding references. Note that the dimensionless
parameters can be obtained according to Eqs. (10) and (11).

There are several references to the biology of the domestic cat on sub-Antarctic is-
lands such as Marion Island and Kerguelen Islands (e.g. Van Aarde, 1979; Van Rensburg
et al., 1987; Say et al., 2002). However, due to the high variability of these parameters,
in particular the cats’ natural death rate d , we employ an averaged value previously used
elsewhere (Courchamp et al., 1995), which was obtained from monitoring rural cat pop-
ulations in France. Estimates for the virulence α and transmissibility σPM of FIV within
cats come from Courchamp et al. (1995, 2000) and Courchamp and Sugihara (1999).

The literature on the biology of seabirds is vast (e.g. Williams et al., 1975, 1979;
Siegfried, 1978; Berruti et al., 2000; Rounsevell and Copson, 1982; Schramm, 1986;
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Table 1 Population and disease parameters for sub-Antarctic islands

Parameter Estimated value Reference

r , per-capita growth rate of birds 0.1 Rounsevell and Copson (1982)
K , carrying capacity of birds –
μ, predation rate –
a, trophic conversion efficiency 0.03 Pimm (1982)
d, natural per-capita death rate of cats 0.6 Courchamp and Sugihara (1999)
βPM, contact rate 1.5 Courchamp et al. (2000)
βMA, contact rate –
δ, virulence 0.2 Courchamp et al. (1995)

The impact of parameters K , μ and βMA is investigated by varying dimensionless parameters e and σMA,
using additional information on the intrinsic growth rate of cats on oceanic islands (cf. Section 3.2).

Ryan, 1987; Brooke et al., 1988; Cooper and Brown, 1990; Cooper et al., 1995;
Sæther and Engen, 2002; Granadeiro et al., 2006). These references provide evidence of
large ecological variability within and between species. For the intrinsic growth rate r , we
therefore use the estimate from King Penguin growth, one of the seabird species of Mar-
ion Island with lowest growth rate, aiming to model an extreme situation. Estimates for
trophic conversion efficiencies of vertebrates are not easy to obtain. Birds and mammals,
being endotherms, have additional requirements of keeping warm when compared to ec-
totherms, and thus their trophic efficiency e is thought to be less than 3% (Pimm, 1982).

The birds’ carrying capacity K and the predation rate μ are the parameters for which
we could find least information or the largest variability and uncertainty. Estimates for the
transmissibility βMA (which has a different dimension than βPM) remain vague as well.
Their impact will be investigated by varying dimensionless parameters e = a

r
μK and

σMA = βMA/μ. The maximum per-capita net growth rate of cats ( aμK−d

r
in the dimen-

sional and e − m in the dimensionless model) as well as the estimated transmissibility
(σPM) define landmarks at which to orient the parameter variation for island ecosystems
(Van Aarde, 1983; Courchamp and Sugihara, 1999). This will be done continuously in
Section 5. The aim of the next section is to investigate determinants of community com-
position and to explore possible dynamical behaviour.

4. General model behaviour

In the first subsection, we introduce biologically plausible threshold quantities, namely
epidemiological and demographic/ecological reproduction numbers. They determine the
persistence and extinction of the disease and the predators. As shown in Hilker and
Schmitz (2008), they can completely explain the entire community composition—before
as well as after disease introduction. Moreover, they confirm the results from linear stabil-
ity analysis of equilibria E = (B∗,C∗, i∗) (summarised in Appendix A). The advantage
of reproduction numbers is the imminent biological insight they provide. The second sub-
section makes use of numerical bifurcation and continuation analysis. The focus will be
on population oscillations induced by dynamic instabilities. Although we are considering
epizootiological systems, we loosely employ notations from standard mathematical epi-
demiology and refer to epidemic and endemic rather than epizootic and enzootic terms.
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4.1. Invasion, persistence and extinction—reproduction numbers

The ecological basic reproduction number of the predators in the absence of disease is

RC
1,0 = e

m
.

Biologically, RC
1,0 gives the expected number of offspring (eB∗) of an average predator

individual in its lifetime (1/m), assuming that the prey population is at carrying capacity
(B∗ = 1). Hence, if RC

1,0 > 1, the predators are sustained by the prey; otherwise, they
go extinct. The subscripts indicate that the prey is at carrying capacity 1 and the disease
prevalence is 0.

The basic reproduction number of the disease is

R0 = Γ (C∗)
m + α

.

R0 can be defined as the number of secondary disease cases (Γ (C∗)) produced by an
infectious individual during its infectious lifetime ( 1

m+α
) after its introduction into an

entirely susceptible population. C∗ is the cat population size at disease-free equilib-
rium EBC , i.e. C∗ = C∗

4 , cf. Appendix A. If R0 < 1, the infection cannot establish and the
fate of the predator population depends on RC

1,0. If RC
1,0 > 1, it will settle at the disease-free

equilibrium, whereas if RC
1,0 < 1 the predators go extinct with only the prey remaining. If

R0 > 1, the disease establishes in the predator population, and the prevalence of infected
individuals stabilises to a positive value. In this case two scenarios can happen depending
on the predators’ basic reproduction number in the presence of disease

RC
1,i = e

m + αi∗ .

RC
1,i is a threshold that takes into account the additional mortality rate α of the infected

population fraction i∗. Note that the subscript ‘i’ in RC
1,i refers to the presence of disease

in the predator population. If RC
1,i > 1, the disease remains endemic in the host population

and all three species coexist at the aforementioned equilibrium.
For the MA model, one can show that always RC

1,i > 1. Hence, the disease cannot
drive the predator population to extinction, which is described by RC

1,i < 1. In the PM
model, host extinction is possible, and the system then tends to either EBi or EB . In both
cases, the predators disappear, but in the process of vanishing predators the prevalence
either remains positive or approaches zero, respectively. The former case corresponds to
disease-induced extinction. In the latter case, the disease goes extinct before the predators
do. These two scenarios can be distinguished by the prevalence reproduction number

Ri = σPM − α

e
= R0

RC
1,i

, (12)

which is defined only for the PM model (as there is no disease-induced extinction in the
MA model). Ri corresponds to the number of secondary infections discounted by the fact
that the total host population and the infecteds change differently. Consider the situation,
in which the prevalence is small compared to the host population. Then the infected part
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approximately decays at a rate σPM −α−m. The total host population, however, decays at
an approximate rate of e −m. The difference between these two rates determines whether
the prevalence grows (Ri > 1) or decays (Ri < 1) and therefore makes up the value of
Ri in (12). The prevalence reproduction number can also be obtained mathematically by
setting the prevalence equation (9) to zero and solving for zero-growth conditions.

Note that Ri can be substituted by the ratio of R0 and RC
1,i . The persistence of all three

species involved can therefore be characterised by three reproduction numbers for both
the MA and the PM model. Three different outcomes in terms of community composition
are possible: (i) prey alone, (ii) prey and predators, and (iii) prey, predators, and disease.
The prey can always survive, hence the equilibria E0 and Ei are always unstable. Since
the predator is a specialist, it always needs the prey to persist. Similarly, the disease needs
the predators as a host.

4.2. Oscillations and stability—numerical continuation of bifurcations

While the reproduction numbers are useful in categorising the persistence or extinction
of populations, they do not give information about the stability of equilibria. This will
be the subject in the remainder of this section. Tables 2 and 3 summarise the community

Table 2 Community composition and stability of equilibria E = (B∗,C∗, i∗) in the PM model

RC
1,0 > 1 RC

1,0 < 1

R0 < 1 R0 > 1,RC
1,i

> 1 R0 > 1,RC
1,i

< 1 Ri < 1 Ri > 1

EB = (1,0,0) Unstable Unstable Unstable Stable Unstable
EBi = (1,0, i∗6 ) – –/unstable Stable – Stable
EBC = (B∗

4 ,C∗
4 ,0) Stable Unstable Unstable – –

EBCi = (B∗
5 ,C∗

5 , i∗5 ) – Stable/cyclic – – –

Birds–cats Birds–cats–FIV Birds only

RC
1,0 and RC

1,i
are the demographic reproduction numbers of the disease-free and infected predator popu-

lation, respectively. R0 is the endemic reproduction number of the disease. Ri is the reproduction number
of the disease prevalence within the predator population and can be substituted by R0/RC

1,i
. Details of the

stationary states are in appendix A. ‘–’ indicates that an equilibrium does not exist or is unfeasible. ‘Cyclic’
means that an equilibrium is unstable and surrounded by a limit cycle. The equilibria E0 = (0,0,0) and
Ei = (0,0,1) are always unstable and therefore omitted.

Table 3 Community composition and stability of equilibria E = (B∗,C∗, i∗) in the MA model

RC
1,0 > 1 RC

1,0 < 1
R0 < 1 R0 > 1

EB = (1,0,0) Unstable Unstable Stable
EBC = (B∗

4 ,C∗
4 ,0) Stable Unstable –

EBCi = (B∗
5 ,C∗

5 , i∗5 ) – Stable/cyclic –

Birds–cats Birds–cats–FIV Birds only

Equilibria E0 = (0,0,0) and Ei = (0,0,1) are always unstable and therefore omitted. All other notations
as in Table 2.
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composition and the stability properties (as determined by reproduction numbers, linear
stability and numerical bifurcation analysis) for the PM and MA model, respectively.

Both systems admit a positive periodic solution, where birds, cats and infection co-
exist in an oscillatory regime. Figures 2a and 2b present bifurcation diagrams for the PM
and MA model, respectively. The bird population size is shown for varying transmissi-
bilities. The cats are assumed to exist on the birds in the absence of disease. For low
transmissibility values, both systems stabilise at EBC . As long as R0 < 1, the disease
cannot invade, and the bird and cat populations remain constant since the predator–prey
subsystem does not depend on disease parameters.

Upon disease establishment (R0 > 1), cats decrease in population size (not shown)
which indirectly leads to the continuous increase of the bird population. For further in-
creasing values of the transmissibility, the species start to oscillate with increasing am-
plitudes. However, the amplitudes of the cycles start to shrink again, and the oscillations
eventually stabilise. Mathematically, the onset and disappearance of these limit cycles cor-
respond to forward and backward Hopf bifurcations, respectively. For even larger trans-
missibilities, the disease continues to depress cat population size and ultimately drives
it to extinction in the PM model. The birds then reach their carrying capacity (Fig. 2a).
In the MA model, cat eradication is not possible and all three species remain at positive
levels for large transmissibilities (cf. Fig. 2b).

A two-parameter continuation analysis is shown in Fig. 3 with virus transmissibility
(σPM or σMA) and the predators’ trophic conversion efficiency (e) as bifurcation para-
meters. Four different scenarios can be distinguished in the PM model (Fig. 3a). Para-
meter region 1 corresponds to the disease-free equilibrium (EBC ) being stable, region 2
corresponds to the stable coexistence state (EBCi ), region 3 corresponds to the unstable
coexistence state, characterised by cyclic dynamics (stable limit cycles), and region 4 cor-
responds to the stable disease-induced extinction state (EBi ). The MA model allows for
three different parameter regions, as there is no disease-induced extinction (Fig. 3b). Cat
eradication in the PM model is possible for highly transmissible viruses and small trophic
conversions. Limit cycle oscillations require a minimum efficiency of trophic conversion
and intermediate ranges of transmissibility values.

5. Impact analysis for sub-Antarctic ecosystems

The previous section identified invasion, persistence and extinction conditions as well
as potential dynamical behaviour. This section is concerned with the consequences of
FIV release on oceanic islands. We therefore use existing parameter values and vary un-
known parameters in ranges that can be regarded as plausible for sub-Antarctic islands
(cf. Section 3.2). The aim is to investigate the impact of pathogen introduction on the host
(predator) population as well as on the prey population. To measure the effect of biologi-
cal control, we consider the following quantity to which we shall refer as perturbation of
the cat population by FIV introduction:

C• − C◦

C◦ × 100.

C• and C◦ denote the equilibrium values of the cat population after and before disease
introduction, respectively. Note that C• = C∗

5 if the disease successfully invades or C• =
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Fig. 2 Bifurcation diagram generated by XPPAUT for the bird population in the PM model (top panel)
and the MA model (bottom panel). Solid (dashed) lines correspond to stable (unstable) equilibria. Filled
circles indicate the maximum and minimum amplitudes of stable limit cycle oscillations. Zero solutions
are not shown. Parameter values: m = 0.3, α = 8, e = 4 (top) and e = 5 (bottom).
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Fig. 3 Classification of the dynamic model behaviour. The two-parameter diagrams are obtained from
XPPAUT by continuing each bifurcation (transcritical and Hopf bifurcations). Possible outcomes: (1) dis-
ease cannot establish; (2) endemic coexistence; (3) cyclic endemic coexistence; and (4) disease-induced
predator extinction. R0 = 1 corresponds to the transcritical bifurcation line separating regions 1 and 2.
RC

1,i
= 1 corresponds to the transcritical bifurcation line separating regions 2 and 4. The Hopf bifurcation

line between regions 2 and 3 indicates the (dis-)appearance of limit cycle oscillations. Fixed parameter
values: m = 0.3 and α = 2.

C∗
4 otherwise (cf. Appendix A). For the disease-free value, C◦ = C∗

4 or C◦ = 0 depending
on whether the predators can exist on the prey. The perturbation of the bird population is
defined analogously. Thus, the perturbation measure basically is the percentual variation
of the abundance of each species after virus introduction. If the model exhibits cyclic
dynamics, we rather use the mean population size averaged over an oscillation.

Figure 4 illustrates the potential impact of introducing FIV in a cat population with ei-
ther PM or MA transmission, for both the host and its prey. First of all, one can clearly see
the minimum transmissibility required for disease establishment (i.e. R0 > 1). In the PM
model, this is a constant. In the MA model, this varies with trophic conversion efficiency.
Otherwise, if R0 < 1, the disease does not invade (i.e. C• ≡ C◦,B• ≡ B◦) and the pertur-
bations of cats and birds remain zero. One can also clearly identify the critical value of
trophic conversion efficiency e, for which the predators’ disease-free basic reproduction
number is equal to one. For RC

1,0 < 1, the predators cannot exist even in the absence of
disease, i.e. C• ≡ C◦ ≡ 0. The perturbation of cats is not defined in this parameter range.
The birds remain at their carrying capacity (B• ≡ B◦ ≡ 1), hence there is no impact on
them.

Successful disease introduction, in general, leads to a reduction in predator popula-
tion size, indirectly promoting an increase in the prey. We now consider the two different
incidence terms separately. In the PM model, cats appear to be not that much affected
by FIV for large values of the trophic conversion efficiency (Fig. 4a). Increased con-
sumption rates balance the disease-related mortality. For small conversion efficiencies,
however, FIV is capable of reducing its host significantly. The disease can even eradicate
the cats (RC

1,i < 1, not marked in Fig. 4a), provided the trophic conversion of the host is
sufficiently low. Despite the lack of knowledge regarding real numerical values for this
parameter, such low values do not seem realistic (Section 3.2). Thus, our results suggest
that FIV cannot eradicate cat populations and depresses them only marginally in ecolog-
ical settings similar to sub-Antarctic islands. However, it can be effective in allowing the
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Fig. 4 Impact of FIV introduction on cats and birds, plotted over parameter ranges that can be considered
biologically plausible. The perturbation is defined as the percentual change of the mean population values
before and after virus release. An impact of −100% corresponds to extinction. The solid white lines in
panels (a) and (c) separate parameter regions with cyclic dynamics. Parameter values: m = 6 and α = 2.

endangered prey to recover. The gain of the bird population after FIV introduction in-
creases with transmissibility (Fig. 4c). Trophic conversion efficiency does not affect the
disease impact on the birds. Instabilities in form of population cycles have no effect on
the average impact of pathogen release. This is because the mean population sizes dur-
ing an oscillatory period is equal to the population size of the unstable stationary state
(cf. Appendix B).

In the MA model, cats eradication is not possible, because disease transmission van-
ishes for small host population sizes. The impact on cats therefore increases with trans-
missibility values (Fig. 4b). Even very small trophic conversion efficiencies are not dan-
gerous for the cats in the MA model, because the disease-related deaths remain limited
in small host population sizes. The recovery of the bird population after FIV introduction
increases with both transmissibility and trophic conversion efficiency (Fig. 4d). A larger
conversion efficiency of the predators means that the cats have a larger population in
which the disease can spread more quickly. In a biologically plausible parameter range,
MA transmission does not lead to population oscillation (although they are possible in
principle as we showed in the previous section).
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6. Conclusions and discussion

We have presented a theoretical study of the potential effects of introducing a retrovirus
into an ecosystem for biological control purposes. In particular, the effects of releasing
Feline Immunodeficiency Virus (FIV) in a cat population that preys exclusively on island
bird species have been addressed. Our results suggest that FIV has the potential to depress
feral cats by lowering their population equilibrium level. For both transmission modes, the
reduction in cat population size due to disease introduction gives endangered bird species
a chance to recover. The models thus reveal that pathogens can be used as bio-control
agents not only for their host, but also for other trophic levels. This is in accordance with
previous work demonstrating that infectious diseases have regulatory effects also on other
species their host interacts with (e.g. Anderson and May, 1986).

The regulatory competence of FIV, however, depends strongly on ecological de-
tails within the system considered. The social and spatial organisation structure of cat
populations is highly variable as is the population dynamics (Berthier et al., 2000;
Liberg et al., 2000). Therefore, we considered two models of virus spread that repre-
sent the classic extremes of disease transmission, proportionate mixing (PM model), and
mass action (MA model).

If FIV is transmitted by mass action, the disease cannot lead to host extinction. This
is because pathogen transmission vanishes for small host population sizes (e.g. de Castro
and Bolker, 2005), provided that the host does not experience an Allee effect which could
drive the population extinct in a joint interplay with the disease (Hilker et al., 2009). De-
pressing the population size of cats is possible—but not their eradication. If the objective
of a control programme is host eradication and if transmission is of mass action type, dis-
ease introduction alone is not to be recommended. Other methods, such as trapping and
culling, despite their already mentioned disadvantages, might have more success.

With proportionate mixing, pathogen transmission is ongoing even in vanishing pop-
ulations. Disease-induced extinction can occur under certain conditions, e.g. if the trans-
missibility is sufficiently large (Fig. 2a) and the trophic conversion efficiency of the host
sufficiently low (Fig. 4a). Specific parameter estimates for the conversion efficiency are
lacking, but such extreme values of both conversion efficiency and transmissibility appear
to be unrealistic (cf. Section 5). Although disease-induced eradication therefore seems to
be unlikely for proportionate mixing, FIV might prove an effective agent for long-term
control with moderate population reduction. Given the low impact FIV is thought to have
on cats (Courchamp et al., 1995), this is a plausible result.

In general, we can distinguish the following scenarios, which are showcased in Fig. 5:

1. disease-induced extinction of the predators (Fig. 5a)
2. long-term control of the predators (Fig. 5b)
3. system destabilisation, meaning that disease introduction induces limit cycle oscilla-

tions (Fig. 5c)

Note that all three outcomes imply a recovery of the bird population, but the actual extent
depends on the parameter values. According to the ecological context of sub-Antarctic
Islands, scenarios (b) and (c) appear to be realistic for the PM model. For the MA model,
scenario (b) is likely to occur since (a) is impossible and (c) unrealistic.

Scenarios (a) and (b) are similar to the conclusions from an earlier, but ill-posed
model (Courchamp and Sugihara, 1999). The destabilisation of community dynamics



Modelling Disease Introduction as Biological Control 459

Fig. 5 Potential outcomes of FIV introduction into a birds–cats food chain. (a) Disease-induced extinc-
tion of the predators; (b) long-term depression of the host: FIV introduction is not able to eradicate cats,
but reduces their population significantly; (c) the disease destabilises the system, inducing limit cycle os-
cillations. According to the ecological context of sub-Antarctic islands, scenarios (b) and (c) are possible
for the PM model and only scenario (b) seems likely for the MA model. All three time-plots are obtained
from the PM model with the following parameter values: e = 3.5,m = 1, α = 8 and (a) σPM = 13, (b)
σPM = 12 and (c) σPM = 10. Note that time on the horizontal axis is dimensional in this plot.
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Fig. 5 (Continued.)

(c) is a potential effect of FIV introduction that has not been addressed before and that
we shall discuss in the remainder in some detail. Regular limit cycle oscillations may
appear under both types of virus transmission. The underlying predator–prey model of
Lotka–Volterra type, however, does not allow for population cycles (e.g. Kot, 2001).
The sustained fluctuations can therefore be clearly attributed to the introduction of dis-
ease agents. The emergence of cycles in simple predator–prey models of Lotka–Volterra
type with infected predators has been reported before (e.g. Anderson and May, 1986).
Such eco-epidemiological models have some structural similarity to intra-guild predation
models, for which dynamic instabilities leading to oscillations and chaos have been ob-
served as well—even when population interactions are bi-linear (Holt and Polis, 1997;
Tanabe and Namba, 2005). One could think of infected predators as top-predators “con-
suming” both susceptible predators and prey. However, the infected predators reproduce
into the susceptible compartment as there is no vertical transmission of FIV. Hence, the
analogy of our models with intra-guild predation food webs is limited.

In the disease-free system, there is a unique and stable equilibrium of prey and preda-
tors. Consider a perturbation of this equilibrium in the form that the prey population is
increased. Then the consumption rate of predators increases linearly, thus reducing the
prey and leading to an approach of the equilibrium in damped oscillations. In the presence
of disease, however, susceptible predators become infected and, moreover, suffer from an
additional disease-related death rate. Infected predators continue to consume prey with
the same rate as susceptible predators, but the disease transmission and mortality induce
a kind of time lag, which allows the prey to continue growing. Only when the prey has
become abundant in large numbers, the predation rates increase sufficiently to rebound
the predators and depress the prey. Next, when the prey population becomes too small,
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the predators decline and suffer again from additional disease mortality, which allows the
prey to take off and start the cycle again.

Interestingly, disease-induced destabilisation is possible for both transmission modes.
Since mass action transmission depends on host population size, one can imagine that it
might be more prone to fluctuations than proportionate mixing. In fact, MA transmission
admits oscillations in a simple SI model with Allee effect (Hilker et al., 2009), whereas
PM transmission in the same model does not exhibit fluctuations (Hilker et al., 2007). PM
could have therefore be seen as more stabilising.

The key ingredient to induce oscillations appears to be disease-related host mortality,
for both PM and MA transmission. The onset of cycles occurs when the disease bur-
den is sufficiently large, which requires large enough transmissibilities, for example. This
explains the first (forward) Hopf bifurcation point in Fig. 2. The oscillations disappear
again for further increasing transmissibilities in a second (backward) Hopf bifurcation.
If disease burden is too large, the predator population is reduced to such a level that the
density-dependence felt by the prey becomes strong. This is a well-known stabilising
mechanism and has been identified to stabilise endogenous predator–prey cycles as well
(Hilker and Schmitz, 2008).

The interaction of the two (forward and backward) Hopf bifurcations leads to a “bub-
bling” phenomenon: oscillations appear and their amplitudes increase in extent until they
reach some maxima and decrease before the cycles eventually disappear (cf. Fig. 2).
A similar bubbling has been observed in few models only (Xiao and Van Den Bosch,
2003; Fenton and Rands, 2006). Our models appear to be structurally simpler and allow
to identify and explain the underlying mechanisms.

The possibility of population oscillations is very interesting from a biological control
point of view. When populations cycle, they periodically undergo peaks and troughs. This
can be a double-edged sword for management measures. On the one hand, if bird popula-
tions become very small in such troughs, they become even more prone to extinction than
they were at equilibrium. This is a negative aspect of the cyclic regime and why it should
be avoided. On the other hand, there could also be a positive aspect if the cat population
becomes very small. In this case, successful eradication seems more likely as only a much
smaller population size would need to be removed. This could be of advantage in the plan-
ning of control actions, for example in combination with culling. These considerations are
especially relevant for drastic oscillations with extreme amplitudes (e.g., Fig. 2a). Taking
into account stochastic effects, which are abundant in nature, one can expect that the
species is driven to extinction.

In summary, before any control attempt through the introduction of a pathogen is made,
the relevant eco-epidemiological parameters involved should be investigated. Our mod-
els confirm that the impact of a parasite may vary widely according to host population
characteristics (Grenfell and Dobson, 1995), thus stressing the need of detailed field stud-
ies before engaging into large-scale control programmes. Any such action must require
a careful preliminary study before a pathogen is introduced into an ecosystem; other-
wise, the consequences of such measure can be devastating. In particular, host–parasite
interactions can be substantially different in their organisational structure and dynamics;
a single model may therefore be insufficient to explore the potential impacts of bio-control
agents. Mathematical models can only be one source of guidance for biological control
programmes. Other sources of information will be crucial and are required for more re-
fined parameterisations and validations of the models developed. They include, amongst
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others: the natural history; the natural enemy’s suitability to local climate and environ-
ment; the phenotypes of pest and enemy; their habitat requirements; and the danger of
attack by the enemy on non-target species. The continual testing of models with data in
different circumstances seems to be a promising strategy to approach a solution which is
as good as possible (Le Corre, 2008).

The possibility of introducing pathogens in an ecosystem for biological conservation
purposes implies potentially killing animals. One should also keep in mind that these
animals have become part of the ecosystem as well and fulfill certain roles (e.g., cats
preying on rodents). Even though our paper is theoretical in nature, both ethical concerns
and philosophical questions demand caution before putting theory into practice.
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Appendix A: Linear stability analysis

This Appendix outlines the linear stability analysis of the PM and MA models. Conditions
for the existence and local stability of equilibria will be presented as far as possible. The
Jacobian of model system (7)–(9) is

⎛
⎜⎝

1 − 2B − C −B 0

eC eB − m − αi −αC

−ei (1 − i)i ∂
∂C

Γ (C) (Γ (C) − α)(1 − 2i) − eB

⎞
⎟⎠ .

A.1 PM model

System (7)–(9) with PM transmission has six possible equilibria: E0, Ei , EB , EBC , EBi

and EBCi , where the indices indicate which state variables are non–zero in the equilib-
rium. The stability conditions are as follows:

1. E0 = (0,0,0). The trivial extinction state is always a saddle point, which means it is
always unstable. The eigenvalues are

λ1 = 1 > 0,

λ2 = −m < 0,

λ3 = σPM − α.
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2. Ei = (0,0,1). The trivial extinction state due to disease is always a saddle point, which
means it is always unstable. The eigenvalues are

λ1 = 1 > 0,

λ2 = −m − α < 0,

λ3 = −(σPM − α).

3. EB = (1,0,0). The disease-free prey-only state is stable if the predators cannot estab-
lish (RC

1,0 < 1) and decay faster than the disease at small population size (Ri < 1). The
eigenvalues are

λ1 = −1 < 0,

λ2 = e − m ≶ 0 if RC
1,0 ≶ 1,

λ3 = σPM − α − e ≶ 0 if Ri ≶ 1.

4. EBC = (B∗
4 ,C∗

4 ,0) with B∗
4 = m

e
and C∗

4 = e−m
e

. The predator–prey coexistence state
in the disease-free subsystem exists if RC

1,0 > 1 and it is stable if R0 < 1. The eigen-
values are

λ1 = σPM − α − m ≶ 0 if R0 ≶ 1,

λ2,3 = 1

2e

(
−m ±

√
m

(
m + 4e[m − e])) with Re λ2,3 < 0.

5. EBCi = (B∗
5 ,C∗

5 , i∗
5 ) with B∗

5 = (σPM−α)(m+α)

eσPM
, C∗

5 = eσPM−(σPM−α)(m+α)

eσPM
and i∗

5 =
σPM−α−m

σPM
. The non-trivial, endemic coexistence equilibrium exists if R0 > 1 and

RC
1,i > 1. The eigenvalues are too lengthy to present, but one can implicitly show

that EBCi is stable if

σPM > αi∗
5 − 1

2

(
B∗

5 −
√

B∗2
5 + 4eαC∗

5 i∗
5 − 4eB∗

5 C∗
5

)
and

σPM < αi∗
5 − 1

2

(
B∗

5 +
√

B∗2
5 + 4eαC∗

5 i∗
5 − 4eB∗

5 C∗
5

)
.

If these conditions are not fulfilled, EBCi is unstable and numerical simulations reveal
the existence of stable limit cycles.

6. EBi = (1,0, i∗
6 ) with i∗

6 = σPM−α−e

σPM−α
. This equilibrium exists if Ri > 1 and is stable if

RC
1,i < 1. The eigenvalues are

λ1 = −1 < 0,

λ2 = eσPM

σPM − α
− m − α ≶ 0 if RC

1,i ≶ 1,

λ3 = −(σPM − α − e) ≶ 0 if Ri ≷ 1.

There is one special case that occurs only for the particular parameter combination
σPM = α. In this case, E7 = (0,0, i∗

7 ) with i∗
7 ∈ (0,1) is a continuum of stationary
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states. These equilibria are unstable saddle points; their eigenvalues are λ1 = 1 > 0,
λ2 = −m − αi∗

7 < 0, λ3 = (σPM − α)(1 − 2i∗
7 ). As the parameter condition is unlikely

to be met exactly in nature, this special case is not considered in the main text.

A.2 MA model

System (7)–(9) with MA transmission has five possible equilibria: E0, Ei , EB , EBC and
EBCi . The equilibrium corresponding to cat eradication with positive prevalence and bird
persistence does not exist. The stability conditions are as follows:

1. E0 = (0,0,0). The trivial extinction state is always a saddle point, which means it is
always unstable. The eigenvalues are

λ1 = 1 > 0,

λ2 = −m < 0,

λ3 = −α < 0.

2. Ei = (0,0,1). This trivial disease-induced extinction state is always a saddle point,
which means it is always unstable. The eigenvalues are

λ1 = 1 > 0,

λ2 = −m − α < 0,

λ3 = α > 0.

3. EB = (1,0,0). The disease-free prey-only state is stable if the predators are too weak
to establish (RC

1,0 < 1). The eigenvalues are

λ1 = −1 < 0,

λ2 = e − m ≶ 0 if RC
1,0 ≶ 1,

λ3 = −e − α < 0.

4. EBC = (B∗
4 ,C∗

4 ,0) with B∗
4 = m

e
and C∗

4 = e−m
e

. The predator–prey coexistence state
in the disease-free subsystem exists if RC

1,0 > 1 and it is stable if R0 < 1. The eigen-
values are

λ1 = σMA − α − m(σMA + e)

e
≶ 0 if R0 ≶ 1,

λ2,3 = 1

2e

(−m ±
√

m2 − 4em(e − m)
)

with Re λ2,3 < 0.

5. EBCi = (B∗
5 ,C∗

5 , i∗
5 ) with B∗

5 , C∗
5 and i∗

5 being long and cumbersome expressions; they
can be easily obtained by a computer algebra system and it can be checked that they are
biologically feasible. The reasoning in Section 4 makes clear that EBCi cannot exist if
R0 < 1 and RC

1,i < 1. The stability of the nontrivial equilibrium has been investigated
by means of continuation analysis and numerical simulations. EBCi can be stable or
unstable. In the latter case, stable limit cycles exist.
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Appendix B: Mean population sizes in cyclic regimes

We demonstrate analytically that, in the PM model, the average value x of a state variable
in a cycle period T is equal to the value x∗ of the corresponding unstable equilibrium.

Consider the first equation (7). Dividing by B yields

B ′

B
= 1 − B − C,

where the prime denotes the derivative with respect to time. Integrating in [0, T ] and
taking into account that B(0) = B(T ), we get

∫ T

0

B ′(t)
B(t)

dt = lnB(T ) − lnB(0) = 0 =
∫ T

0
1 dt −

∫ T

0
B(t)dt −

∫ T

0
C(t)dt.

Dividing by T and recalling that x = 1
T

∫ T

0 x(t)dt , we finally obtain:

0 = 1 − B − C.

Proceeding in a similar way with the other Eqs. (8) and (9), we see that the averages
satisfy the entire system of differential equations and therefore correspond to the non-
trivial equilibria.
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