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Bifurcation Sequences in a Discontinuous Piecewise-Smooth Map Combining
Constant-Catch and Threshold-Based Harvesting Strategies\ast 

Cristina Lois-Prados\dagger and Frank M. Hilker\ddagger 

Abstract. We consider a harvesting strategy that allows constant catches if the population size is above a
certain threshold value (to obtain predictable yield) and no catches if the population size is below
the threshold (to protect the population). We refer to this strategy as threshold constant-catch
(TCC) harvesting. We provide analytical and numerical results when applying TCC to monotone
population growth models. TCC remedies the tendency to fishery collapse of pure constant-catch
harvesting and provides a buffer for quotas larger than the maximum sustainable yield. From a
dynamical systems point of view, TCC gives rise to a piecewise-smooth map with a discontinuity at
the threshold population size. The dynamical behavior includes border-collision bifurcations, basin
boundary metamorphoses, and boundary-collision bifurcation. We further find Farey trees, a slightly
modified truncated skew tent map scenario, and the bandcount incrementing scenario. Our results
underline, on the one hand, the protective function of thresholds in harvest control rules. On the
other hand, they highlight the dynamical complexities due to discontinuities that can arise naturally
in threshold-based harvesting strategies.

Key words. nonsmooth discrete one-dimensional dynamical system, discontinuous difference equation, border-
collision bifurcation, fishery model, population harvesting, harvest control rule
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1. Introduction. Overexploitation of natural populations remains a major problem world-
wide. 72\% of the more than 8,000 species on the IUCN Red List are overexploited, for example
through hunting, fishing, logging, or collecting species from the wild [43]. Industrial fishing
occurs in more than half of the world's ocean area, which amounts to an area more than four
times that of terrestrial agriculture [37]. In order to prevent overexploitation, many fisheries
are managed on the basis of thresholds [25, 47, 33]. These are population sizes, or spawning
stock biomasses, below which harvesting is curtailed or suspended so that the population can
gradually recover. They are also called biological reference points [42, 12].

The dynamics of single-species fisheries may be described mathematically by one-dimen-
sional discrete-time maps. If the harvesting is based on threshold population sizes, the map

\ast Received by the editors April 30, 2021; accepted for publication (in revised form) by M. Chaves December 1,
2021; published electronically February 10, 2022.

https://doi.org/10.1137/21M1416515
Funding: The first author's work was partially supported by PhD scholarship FPU18/00719 (Ministerio de

Ciencia, Innovaci\'on y Universidades, Spain) and research grants MTM2016-75140-P (AEI/FEDER, UE), ED431C
2019/02 (Xunta de Galicia). Osnabr\"uck University provided funding to the first author to visit the Institute of
Environmental Systems Research for a period of six weeks, during which parts of this work were completed.

\dagger Instituto de Matem\'aticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Com-
postela, Spain (cristina.lois.prados@usc.es).

\ddagger Institute of Environmental Systems Research and Institute of Mathematics, School of Mathematics/Computer
Science, Osnabr\"uck University, D--49076 Osnabr\"uck, Germany (frank.hilker@uni-osnabrueck.de).

470

D
ow

nl
oa

de
d 

02
/1

4/
22

 to
 1

31
.1

73
.2

8.
36

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/21M1416515
mailto:cristina.lois.prados@usc.es
mailto:frank.hilker@uni-osnabrueck.de


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A DISCONTINUOUS PIECEWISE-SMOOTH HARVEST STRATEGY 471

will be composed of different branches (corresponding to high or low/no harvesting) defined
on intervals which are separated at the threshold points (also called break points in the
dynamical systems literature). As the map is not differentiable at the threshold points, this
gives rise to piecewise-smooth dynamical systems (see, e.g., [13, 3]). They can exhibit so-called
nonsmooth bifurcations that differ substantially from those that occur in smooth dynamical
systems [14, 4], e.g., border-collision bifurcations [46]. Nonsmooth bifurcations are related to
invariant sets colliding with a break point, which is given by the harvesting threshold. In
recent years, a lot of progress has been made in understanding the dynamics of piecewise-
smooth maps (see, e.g., [4, 21, 57, 48]). However, even though they emerge quite naturally
in the context of threshold-based harvesting, their mathematical analysis in the context of
fishery models is just at the beginning [5, 16, 17, 28, 29, 40, 52, 53].

Here, we study a harvest control rule that induces a discontinuity at the threshold point.
Our results will show that this gives rise to highly complex dynamics, including multiple
attractors, different periodic cycles, homoclinic orbits, and even chaotic oscillations. The
bifurcations in which these dynamical patterns emerge and disappear involve border- and
boundary-collision bifurcations as well as basin boundary metamorphoses. Hence, the discon-
tinuity in the harvest control rule produces rich dynamics that, to our knowledge, have not
been observed in continuous harvesting maps. This is particularly true for population maps
that are monotone in the absence of harvesting.

The harvesting strategy we consider takes constant catches above the threshold popu-
lation size and no harvest below the threshold. We shall refer to this policy as threshold
constant-catch (TCC). Pure constant-catch (CC) removes a constant amount of yield from
the population per unit time. According to Fryxell, Sinclair, and Caughley, CC strategies
used to be the norm ``in the not-so-distant past"" (see [19, p. 330]). As they lack a feedback
mechanism to respond to changes in population size, they are considered to increase the risk
of stock depletion and crashes, especially in variable environments [9, 26, 41, 20]. On the
other hand, one of their main advantages are quotas that remain unchanged or vary very lit-
tle. Managers frequently propose yield-stabilizing measures so as to achieve more predictable
conditions for industry and to reduce capital costs to change production capacity; see [44]
and section 3.5.17 of [31]. The economic advantage in stabilizing yield variations may even
outweigh greater yields obtained from alternative control rules [11, 45]. Moreover, constant
catches have also been argued for in data-poor situations or as part of indicator-based man-
agement [32, 36, 55]. Hence, CC policies may be attractive from an economic, transparency,
and implementation point of view. Yet, it has been argued that they ``should include some
mechanisms to reduce removals if there are signals of stock depletion"" (see [55, p. 701]).

The rationale for the TCC strategy is to augment the catch-stabilizing CC strategy with
a threshold point to protect the stock if it is below the threshold. Threshold-based strategies
are considered more protective and precautionary. In general, above the threshold several
harvesting strategies are possible, e.g., harvesting the entire excess (fixed escapement; see
[8, 38, 29]), a proportion of the excess (proportional threshold harvesting; see [15, 35, 28]), or
a proportion of the population (threshold policy; see [51, 5]).

CC strategies above the threshold are referred to as conditional constant-catch strategies in
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472 CRISTINA LOIS-PRADOS AND FRANK M. HILKER

[12].1 Mathematical and simulation models of such strategies are relatively rare and scattered
in the literature [7, 30, 10, 2, 56, 49, 40]. To our knowledge, the TCC strategy has been
considered so far only in a slightly different form in [2] and as a special case in [30]; see
subsection 2.3 for more details. A related strategy, called precautionary threshold constant-
catch (PTCC) harvesting [40], removes the discontinuity at the threshold point by gradually
increasing the allowed harvest until the CC level is reached. The PTCC strategy will serve as
a baseline, against which we can compare the effects induced by the discontinuity. Figure 1
shows an illustration of CC harvesting, PTCC, and TCC.

(A) (B)

(C) (D)

H

catch

escapement

Extinction
? H

H

catch

escap.

No harvest
? T T +H

H
catch

escapement

No harvest
? T

Population biomass

H

catch

escap.

No harv.
?

Extinc.
?T H

Population biomass

Figure 1. Different harvesting strategies which make use of constant catches. We represent the catch (red
solid line) as a function of the population biomass. The blue line represents the identity map, T is the threshold,
and H is the maximum allowed quota. (A) CC harvesting; (B) PTCC harvesting. The bottom panels show
TCC harvesting with (C) H < T and (D) H > T .

In this paper, we use single-species difference equations with monotone stock-recruitment
relationships as generic undercompensatory population models. We study the influence of
the harvest control parameters on population dynamics, average yield, and harvest frequency.
The paper is organized as follows. Section 2 introduces the model and its underlying assump-
tions. It also compares TCC with similar control rules. Section 3 briefly recaps definitions of
stability and bifurcations, with special attention to those related with piecewise-smooth maps.
In section 4, we provide analytical results on the stability of fixed points and the existence
of intervals which do not contain any equilibrium and attract long-term dynamics. In sec-
tion 5, we combine the rigorous results provided in the previous section with simulations from

1But it should be noted that this term was used in [10] for a specific harvest strategy for Pacific halibut
with CC harvesting above the threshold and proportional harvesting below the threshold.
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numerical one-parameter bifurcation diagrams to describe the different types of bifurcations,
most of them due to the discontinuity character of TCC. In sections 6 and 7, we vary the
harvest control parameters to obtain one-parameter and two-parameter bifurcation diagrams.
Finally, in section 8 we discuss the results in the context of population dynamics and har-
vesting management, paying special attention to those features induced by the discontinuity
points.

2. Model description. In this section, we first state some basic assumptions underlying
our mathematical model, and we provide the mathematical expression for the TCC control
rule. In subsection 2.2, we consider the CC harvesting rule as a particular case. In subsec-
tion 2.3, we compare the TCC rule with three similar strategies.

2.1. Threshold constant-catch harvesting strategy. We consider a single-species popu-
lation and assume that its growth in the absence of harvesting is governed by the following
one-dimensional difference equation:

(2.1) xn+1 = f(xn),

where xn denotes the population size (or biomass) at the nth generation, n = 0, 1, 2, . . . ,
starting at an initial value x0 > 0. The map f is the production or stock-recruitment curve,
for which we assume the following conditions typical of monotone population models:

(A) f : [0,\infty )  - \rightarrow [0,\infty ) is a \scrC 2 map and has a unique positive fixed point K > 0,
f(x) > x for all x \in (0,K), and f(x) < x for all x > K. Moreover, f(0) = 0, there
exists limx\rightarrow \infty f(x) < \infty , and f \prime (x) > 0, f \prime \prime (x) < 0 for all x \in [0,\infty ).

It is widely known that a population governed by a map f under condition (A) satisfies
that the positive fixed point K is globally asymptotically stable. Condition (A) excludes
overcompensation and Allee effects. A prominent example of monotone population maps is
the Beverton--Holt model

zn+1 =
rzn

1 + azn
,

where r, a \in (0,\infty ) and zn denotes the population size at time step n, n = 0, 1, 2, . . . . Applying
the change of variables xn = azn, we obtain the difference equation:

(2.2) xn+1 =
rxn

1 + xn
.

The Beverton--Holt map defined by f(x) = rx/(1 + x) fulfils condition (A) for r > 1, with
K = r  - 1 and limx\rightarrow \infty f(x) = r. We will use it for the numerical simulations in this
paper, but remark that many of our analytical results hold for more general maps satisfying
condition (A).

When harvesting a population that is growing according to (2.1) with the TCC rule, we
obtain

(2.3) xn+1 = F (xn) :=

\Biggl\{ 
f(xn), f(xn) < T,

max\{ 0, f(xn) - H\} , f(xn) \geq T.

Note that we assume that population size is measured after harvesting in time step t and before
reproduction in time step t+1. The TCC rule in (2.3) means that there is no harvesting if theD
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Figure 2. Illustration of the graph of the map F (blue solid line). The black dashed curve is the Beverton--
Holt map with r = 3, and the red dashed line is y = x. (A) CC harvesting, where F is piecewise-smooth
continuous with T = 0, H = 0.4. (B) TCC harvesting, where F is piecewise-smooth discontinuous with T =
1, H = 0.4.

population size (after reproduction) is below a threshold level T \geq 0. Above the threshold, the
population is harvested with a CC strategy, where H \geq 0 is the maximum allowed harvesting
quota. Equation (2.3) is a piecewise-smooth map with a discontinuity at the threshold. We
will see that the discontinuity drives complex dynamics and that the threshold corresponds
to a break point in terms of bifurcation theory (see section 3 for definitions).

Let us consider the map g(x) = f(x)  - H, x \in [0,\infty ); then we can rewrite the map
F : [0,\infty )  - \rightarrow [0,\infty ) in the form

(2.4) F (x) =

\left\{     
f(x), f(x) < T,

0, T \leq f(x) < H,

g(x), f(x) \geq max\{ T,H\} .

The piecewise-smooth map F depends on the two harvesting parameters T and H. The
typical shape of F is shown in Figure 2. It is clear that F \equiv f if and only if the harvesting quota
vanishes, i.e.,H = 0, T \geq 0 or the threshold is set too large, i.e., T > sup\{ f(x), x > 0\} , H \geq 0.

The catch (or yield) obtained in generation n is

(2.5) Yn =

\Biggl\{ 
0, f(xn) < T,

min\{ f(xn), H\} , f(xn) \geq T.

For later reference and convenience of the reader, Table 1 collects the meaning of the main
abbreviations and symbols used throughout the paper.

2.2. Constant-catch rule (\bfitT = 0,\bfitH > 0). For later comparison, we state some well-
known results for the CC harvesting rule. It is a special case of the TCC strategy (2.3) for
T = 0 and H > 0. The map reads as

(2.6) xn+1 = max\{ 0, f(xn) - H\} .

Its graph is illustrated in Figure 2(A).
The following proposition establishes a critical value H20 for the maximum allowed quota.

Harvesting above this level (H > H20) will drive the population to extinction. Below this level,D
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Table 1
Main abbreviations and symbols.

Abbreviation/symbol Meaning

CC Constant-catch harvesting rule
TCC Threshold constant-catch harvesting rule
PTCC Precautionary threshold-constant catch harvesting rule

H Maximum allowed quota (constant yield)
T Threshold
f Population map in the absence of harvesting
g g(x) = f(x) - H: population map with CC harvesting
F Population map defining TCC

xn Population size at generation n
Yn Yield at generation n
MSY Maximum sustainable yield

K Positive fixed point of f (carrying capacity of the virgin
stock)

\~x Population size sustaining MSY, satisfying f \prime (\~x) = 1
x\ast 
 - , x

\ast 
+ Positive fixed points of g, i.e., under CC harvesting (0 <

x\ast 
 - \leq \~x \leq x\ast 

+ < K)

SB Smooth bifurcation
BCB Border-collision bifurcation
H20 Fold SB at H20 = f(\~x) - \~x. Corresponds to MSY

H10 Period-adding BCB at H10 = T  - \widetilde x\ast 
+, with f

\Bigl( \widetilde x\ast 
+

\Bigr) 
= T

H12 Existence BCB at H12 = T  - \widetilde x\ast 
 - , with f

\Bigl( \widetilde x\ast 
 - 

\Bigr) 
= T

H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l} Boundary-collision bifurcation at H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l} = f(T ) - T
H\ast Fold SB at H\ast for F 2 = f \circ g

m m = inf\{ x > 0 : F (x) = 0\} (T < H)
M M = sup\{ x > 0 : F (x) = 0\} (T < H)

the population will survive, provided the initial condition is large enough. The proposition
uses that there exists a unique \~x > 0 such that f \prime (\~x) = 1. This follows from assumption (A)
and the mean value theorem. Moreover, \~x \in (0,K). Note that \~x is the minimum population
size, at which the maximum sustainable yield (MSY) can be harvested (see, e.g., [26, 54]). We
use the notation H20 instead of MSY, because the former indicates a fold bifurcation at which
the number of nontrivial fixed points changes from 2 to 0. The value \~x will play an important
role in the study of the dynamics of the harvesting strategies described by (2.3) and (2.6).

Proposition 2.1. Assume that f satisfies (A) and that H > 0. Then every solution of
(2.6) converges to an equilibrium. More specifically, the following hold:

(a) If H < H20 := f(\~x) - \~x, then g has two positive equilibria x\ast  - and x\ast + with 0 < x\ast  - <
\~x < x\ast + < K. While x\ast  - is unstable, x\ast + and 0 are locally asymptotically stable with
the basins of attraction (x\ast  - ,\infty ) and [0, x\ast  - ), respectively.

(b) If H = H20, then \~x is the unique positive fixed point of g. The equilibrium \~x is semi-
stable and 0 locally asymptotically stable with the basins of attraction [\~x,\infty ) and [0, \~x),
respectively.D
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(c) If H > H20, then g has no positive fixed points and 0 is GAS.

The results stated in Proposition 2.1 are well known, and their proof follows from elemen-
tary arguments, such as the mean value theorem and results for bounded increasing/decreasing
sequences.

2.3. Related harvesting strategies. First, we point out that [2] proposed a harvesting
strategy very similar to TCC. It reads as

(2.7) xn+1 =

\Biggl\{ 
f(xn), xn < x\mathrm{t}\mathrm{h},

f(xn) - h, xn \geq x\mathrm{t}\mathrm{h},

where [2] considered specifically the Beverton--Holt map for f and x\mathrm{t}\mathrm{h} is a threshold population
size. The difference from (2.3) is that TCC compares the threshold with the population size
f(xn) after reproduction, whereas (2.7) compares the threshold with the population size xn
before reproduction. However, for the monotone population maps considered in this paper,
there is a correspondence between (2.3) and (2.7). To see this, we note that f is bijective and
that we just have to establish the following relation: T := f (x\mathrm{t}\mathrm{h}) , H := h or, equivalently,
x\mathrm{t}\mathrm{h} := f - 1(T ), h := H for T \in (0,K), H \in (0, T ). The correspondence allows us to use
some results obtained in [2] on the existence of (stable or unstable) 2-cycles and describe the
bifurcations of F 2 (see subsection 5.3). For nonmonotone population maps like the Ricker
map, there can be two break points in the harvest rule (2.3), and there is no correspondence
between (2.3) and (2.7). That is, the two harvest strategies could differ qualitatively in their
dynamics. As the harvest rule in (2.7) refers to a measurement of population size that is further
in the past, this introduces a time lag that, for overcompensatory population maps, could lead
to delayed density-dependent effects which are known to change dynamics quantitatively and
qualitatively [34, 27, 17].

Second, TCC corresponds to a special case of a harvest control rule considered in [30].
This reference tested the strategy with simulations of a model specific for Baltic Sea cod. It
found that the long-term yield was almost not affected by fishery closures due to the threshold,
at least for the catch levels and thresholds they considered.

Third, [40] studied a special case of TCC, called the precautionary threshold constant-catch
(PTCC). This reference assumed that at least a minimum stock greater than the threshold
must remain after harvesting. This constraint removes the discontinuity at the threshold
point. We will see that the dynamics and bifurcation sequences in TCC are considerably
richer than in PTCC. This illustrates the relevance of accounting for discontinuities in harvest
control rules.

3. Background for piecewise-smooth maps. For the sake of completeness, this section
defines some notions used throughout the paper. In subsection 3.1, we start by recalling some
stability concepts: absorbing set; attracting and repelling set; stable, semistable, and unstable
fixed points; etc. (for further reference, see Chapter 1 in [3]). In subsection 3.2, we will then
establish some terms related to bifurcations in piecewise-smooth maps, such as break points
and border-collision bifurcations. We follow the terminology in [3, 13]; see also [40].

Readers familiar with the terminology of nonsmooth dynamical systems may want to
skip this section entirely. Readers familiar with smooth but not with nonsmooth dynamicalD
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systems may want to jump to subsection 3.2.

3.1. Stability concepts. Let us consider a piecewise-smooth map h : J  - \rightarrow J , where
J \subset \BbbR is an interval.

A critical point c is a local extremum associated with the continuous branches of h or
a limiting value of the function h at the discontinuity points. A set E \subset J is absorbing if
h(E) \subseteq E (either E is invariant, h(E) = E; or it is strictly mapped into itself, h(E) \subsetneq E);
there exists a neighborhood \scrU of E such that any point in \scrU is mapped inside E in a finite
number of iterations; E is bounded by two different critical points, or a critical point and its
image.

A closed invariant set R is called repelling if there exists a neighborhood \scrU of R such
that every point in \scrU \setminus R is mapped outside \scrU in a finite number of iterations. An attracting
set A \subset J is a closed invariant set for which there exists a neighborhood \scrU of A such that
h(\scrU ) \subset \scrU and \cap \infty 

i=0h
i(\scrU ) = A. An attractor \scrA is an attracting set with a dense orbit.

Discontinuous one-dimensional maps can have four types of attractors: k-cycles and k-band
chaotic attractors, k \geq 1; and two other types of attractors associated with quasi-periodic
orbits. In general, we use the notation oscillatory attractor for those attractors which are not
fixed points of the map h.

For a fixed point x\ast \in J , defined by h(x\ast ) = x\ast , we use some additional notions. First,
a repelling fixed point is also called unstable. The fixed point x\ast is stable if for all neighbor-
hoods V of x\ast , there exists another neighborhood U of x\ast such that hn(x) \in V for all x \in U ,
n \geq 1. We say x\ast is locally asymptotically stable (LAS) if it is stable and an attractor. If
x\ast is an attractor with \scrU = J , we say that x\ast is a global attractor. If a global attractor is
stable, then we refer to it as globally asymptotically stable (GAS). If x\ast is not an attractor,
but limn\rightarrow \infty h(x) = x\ast for all x \in [x\ast , x\ast + \varepsilon ) or x \in (x\ast + \varepsilon , x\ast ] and some \varepsilon > 0, then we
say x\ast is semistable. Besides, if x\ast is not an attractor but limn\rightarrow \infty hn(x) = x\ast for Lebesgue
almost all x in a neighborhood \scrU of x\ast , we say that x\ast is an essential attractor ; if \scrU = J ,
then we call x\ast an essential global attractor.

3.2. Bifurcation types. The notion of a bifurcation is associated with a qualitative change
in the system dynamics under infinitesimal variation of parameters. Generally, we study bifur-
cations of attractors, but bifurcations of other invariant sets are also worth being investigated
since they can influence the asymptotic dynamics as well. In the piecewise-smooth one-
dimensional system (2.3), we find different types of bifurcations: smooth bifurcations (SBs),
border-collision bifurcations (BCBs), basin boundary metamorphoses, and boundary-collision
bifurcations.

We use the term smooth bifurcations for those bifurcations typical of smooth dynamical
systems, which are associated with the eigenvalues of a fixed point or a cycle passing through
the values \pm 1. For piecewise-smooth maps, they can occur under some degeneracy conditions;
in this case, we refer to them as degenerate SBs. We use the term nonsmooth bifurcation for
those bifurcations which do not belong to any one of these types.

The points where F is not differentiable are called break points. If a break point is a fixed
point of F , then we say it is a boundary fixed point. We recall that the map F in (2.4) is
defined by two (if H < T ) or three (if H \geq T ) differentiable maps: f , g, and the constant
map 0. There are fixed points of f or g that are not fixed points of F ; we refer to them asD
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virtual fixed points. The fixed points of F are called admissible fixed points.
Border-collision bifurcations of fixed points occur when, under infinitesimal parameter

variation, a fixed point collides with a break point and the collision leads to a qualitative
change in the dynamics, with the fixed point transitioning from being admissible to being
virtual or vice versa. Analogous definitions can be provided for k-cycles considering the map
F k instead of F , where F k denotes k iterations of F .

A different group of bifurcations are related to abrupt changes in the basins of attraction,
frequently referred to as basin boundary metamorphoses [23]. We will find transitions from a
simply connected to a multiply connected basin as a parameter is being varied, but note that
more complex transitions have been reported for other systems, e.g., from smooth to fractal
basin boundaries [23].

Finally, boundary-collision bifurcations are caused by the collision of an attractor with an
unstable k-cycle or fixed point. These bifurcations were introduced as crises in [22] for the case
of a chaotic attractor. The bifurcation is called a boundary crisis when the unstable orbit is
on the boundary of the chaotic attractor and the collision destroys the chaotic attractor. The
bifurcation is called an interior crisis when the collision occurs within the basin of attraction.
An interior crisis often results in a sudden expansion of the basin of attraction.

4. Equilibria, stability, and absorbing intervals. A key characteristic of the CC rule is its
propensity to drive populations extinct. Even for small and moderate values of the maximum
allowed quota H, H \leq H20, the population can go extinct if the initial population size is small
(see subsection 2.2). For large harvesting pressures, H > H20, extinction is guaranteed for all
initial conditions. The maximum sustainable yield that can be obtained with CC corresponds
exactly to the critical quota level at the brink of guaranteed extinction. Harvesting at the
MSY is therefore particularly risky.

One of the main results for TCC is that it can avoid the extinction risk imminent in CC.
If the harvest control parameters are chosen such that H < T , then population survival is
guaranteed for all initial conditions. This is because assumption (A) ensures that F (x) > 0
for all x > 0 and F \prime (0+) > 1; thus, all positive initial conditions avoid extinction. In addition,
if T \leq K, then, after a finite number of generations, all initial conditions remain in [T  - H,T ],
with T  - H > 0; we call this scenario population persistence or simply persistence.

In the following, we study in detail the dynamics of the TCC rule governed by (2.3), when
0 < T < sup\{ f(x), x > 0\} and H > 0. We provide theoretical results on the stability of fixed
points and the existence of absorbing intervals. The proofs are provided in Appendix A.1.

We begin by considering the case when the map F has a positive attractor or semistable
equilibrium. An interpretation of some critical quota values can be found in Figures 3 and
5. In the following, for T < H < sup\{ f(x) : x > 0\} , let m = inf\{ x > 0 : F (x) = 0\} and
M = sup\{ x > 0 : F (x) = 0\} .

Proposition 4.1. Assume that f satisfies (A). Denote by x\ast  - and x\ast +, when they exist, the
positive fixed points of g(x) = f(x)  - H, with 0 < x\ast  - \leq \~x \leq x\ast  - < K. Then the following
hold:

(i) If T > K, then K is the unique positive equilibrium. K is GAS for H < T . For T \leq H,
K is LAS with the basin of attraction (0,m) \cup (M,\infty ), and all initial conditions in
[m,M ] converge to 0.D
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(ii) If f(\~x) \leq T < K and H \leq H10 = T  - \widetilde x\ast +, where f
\bigl( \widetilde x\ast +\bigr) = T , then x\ast + \in 

\bigl[ \widetilde x\ast +,K\bigr) 
is the

unique positive fixed point; it is GAS if H < H10 and a global attractor if H = H10.
(iii) If 0 < T < f(\~x), then the following hold:

(a) If H < H12 = T  - \widetilde x\ast  - , where f
\bigl( \widetilde x\ast  - \bigr) = T , then x\ast + \in [\~x,K) is the unique positive

fixed point and it is GAS.
(b) If H12 \leq H < H20 = f(\~x)  - \~x, then x\ast  - < \~x is unstable for all H \not = Hoscill =

f(T ) - T and x\ast + > \~x is LAS with (x\ast  - ,\infty ) contained in its basin of attraction. In
particular, if 0 < T < \~x and Hoscill \leq H < H20, then x\ast + is LAS and it attracts
exactly (x\ast  - ,\infty ).

(c) If H = H20, then \~x is the unique positive fixed point; it is at least semistable, and
[\~x,\infty ) belongs to its basin of attraction.

Now, we focus our attention on the cases where there is an absorbing interval which does
not contain any positive attractor or semistable equilibrium.

Proposition 4.2. Assume that f satisfies (A) and that T \leq K. Denote by x\ast  - and x\ast +,
when they exist, the positive fixed points of g(x) = f(x)  - H, with 0 < x\ast  - \leq \~x \leq x\ast  - < K.
If any of the following conditions hold, then the interval I = [max\{ 0, T  - H\} , T ] is absorbing
and does not contain any positive fixed point:

(a) T = K, H > 0.
(b) f(\~x) \leq T < K, H > H10.
(c) 0 < T < f(\~x), H > H20.
(d) 0 < T < \~x, H \in (Hoscill, H20).

In cases (a), (b), and (c), all orbits of (2.3) enter the interval I in finite time. In case (d),
orbits starting at x0 \in (0, x\ast  - ) enter I after a finite number of generations, but the positive
fixed point x\ast + > T attracts (x\ast  - ,\infty ).

In view of Propositions 4.1 and 4.2, there are different regions in the control parameter
plane (H,T ) where the long-term behavior of the solutions of (2.3) depends on the initial
condition. This will be investigated in more detail in the following sections.

5. Bifurcations. For the TCC rule (2.3) and a population map f satisfying condition (A),
F is a piecewise-smooth discontinuous map. It is therefore interesting to analyze the possible
bifurcations, using as bifurcation parameters the control variables H and T . We begin by
dealing with fixed point BCBs or SBs and basin boundary metamorphoses for a general
map f . Then, for the particular case of the Beverton--Holt model, we determine 2-cycle
BCBs or SBs and boundary-collision bifurcations. For nonsmooth bifurcations, we first give
a general description of the associated long-term dynamics; then we determine the parameter
values at which the bifurcation takes place, and we provide a more detailed description of the
corresponding asymptotic dynamics. It is also worth mentioning that most of this information
comes from analytical results in section 4, [13, section 4.2], and [2, section 4]. Therefore,
it is clearly indicated if the dynamical behavior is deduced from numerical one-parameter
bifurcation diagrams, that is, from simulations.

5.1. Fixed point BCBs and SBs. In the following, we describe the possible dynamical
scenarios at a BCB defined by a boundary fixed point. See Figure 3 for illustrations:

\bullet An existence BCB occurs when a virtual fixed point of F becomes admissible. If theD
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new admissible equilibrium is unstable, there is a transition from (global) attraction
to essential (global) attraction in the dynamics; while if the new admissible fixed point
is stable, then there is a transition from convergence of all initial conditions (ICs) to
another fixed point to some sort of bistability between both equilibria. This bifurcation
takes place when the following hold:
-- 0 < T < f(\~x), H = H12: By Proposition 4.1, we know that the unstable fixed

point x\ast  - of g becomes admissible and the GAS fixed point x\ast + becomes LAS (in
fact, bifurcation diagrams suggest that x\ast + becomes an essential global attractor)
when H is increased or T is decreased. See Figure 3(A1)--(A3).

-- T = K, H > T : By Proposition 4.1, we know that the stable fixed point K
of f becomes an admissible fixed point and there is a transition as T is increased
from all ICs converging to the unstable equilibrium 0 (observed in one-parameter
bifurcation diagrams) to a bistable scenario in which ICs in [m,M ] converge to 0
and ICs in [0,\infty )\setminus [m,M ] converge to the LAS fixed point K.

\bullet A period-adding BCB occurs when an LAS admissible fixed point collides with a break
point. At the collision point, there is a homoclinic orbit; after the collision, the fixed
point becomes virtual, and an attracting m-periodic orbit becomes admissible, giving
rise to a period-adding scenario (for details, see Chapter 3 in [3]). This bifurcation
takes place when the following hold:
-- f(\~x) < T < K, H = H10: For H < H10, by Proposition 4.1 we know that the

admissible fixed point x\ast +, with g\prime (x\ast +) \in (0, 1), is GAS in (0,\infty ). At H = H10,
the equilibrium x\ast + collides with a break point; from the results in subsection 4.2.3
in [13], we deduce that, as H or T are increased, an attracting long-period cycle
becomes admissible. See Figure 3(B1)--(B3).

-- T = K, H < T : For T > K, by Proposition 4.1 we know that the admissible
equilibrium K is GAS in (0,\infty ). At T = K, the virtual fixed point K, with
f \prime (K) \in (0, 1), collides with a break point; from the results in subsection 4.2.3 in
[13], we deduce that, as T is decreased, an attracting long-period cycle becomes
admissible.

There is also a fold SB when 0 < T < f(\~x), H = H20: The admissible fixed points
x\ast  - \leq \~x \leq x\ast + of g collide and suddenly disappear when H is increased. This fold SB also
exists in the CC rule and is ``inherited"" by TCC.

Figure 6 is a two-parameter bifurcation diagram for the case where f is the Beverton--Holt
map. In this diagram, we represent fixed point BCBs and SBs for F with solid and dashed
curves, respectively. Dark blue is for existence BCBs, magenta for period-adding BCBs, and
red for fold SB.

5.2. Basin boundary metamorphoses. These types of bifurcations occur when there is
a transition from coexistence of an (essential) global attractor \scrA and an admissible repelling
fixed point \scrR of F to some sort of bistability between the attractor \scrA and \scrR , in such a way
that \scrR is still repelling but some ICs converge to it. These bifurcations take place when the
following hold:

\bullet 0 < T < H20 = f(\~x) - \~x, H = T < H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l}: 0 is an admissible unstable equilibrium, and
bifurcation diagrams suggest that x\ast + is an essential global attractor for all 0 < H < T .D
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Figure 3. Illustrations of fixed point BCBs and basin boundary metamorphoses arising in the TCC
rule (2.3). The Beverton--Holt map f(x) = 3x/(1 + x) is the black dashed curve, and the blue solid curve
is the corresponding map F . The red dashed line is y = x. The attracting cycles \{ x0, F (x0), F

2(x0), . . .\} 
and homoclinic orbits are shown in magenta and green, respectively. Top panels: Existence BCB for
T = 0.8 < f(\~x) \approx 1.27. (A1): H = 0.36 < H12 \approx 0.44; (A2): H = H12; (A3): H = 0.49 > H12. Mid-
panels: Period-adding BCB for f(\~x) < T = 1.4 < K = 2. (B1): H = 0.45 < H10 \approx 0.53; (B2): H = H10,
homoclinic orbit; (B3): H = 0.54 > H10, F 9(x0) = x0. Bottom panels: Basin boundary metamorphosis for
0 < T = 0.4 < min\{ H20, Hoscill\} \approx 0.46. (C1): H = 0.3 < T ; (C2): H = 0.4 = T ; (C3): H = 0.45 \in (Hoscill, T ).

As H is increased or T is decreased through H = T , x\ast + is LAS and the fixed point 0
is still unstable but the ICs in [m,M ] converge to it. See Figure 3(C1)--(C3).

\bullet T > K, H = T : By Proposition 4.1, we know that K is GAS in (0,\infty ) and 0 is
unstable for all 0 < H < T . As H is increased or T is decreased through H = T , K
becomes LAS and 0 is still repelling but the ICs in [m,M ] converge to it.

In Figure 6, basin boundary metamorphoses are shown as orange solid lines.

5.3. 2-cycle BCBs and SBs. 2-cycle BCBs are fixed point BCBs of the piecewise-smooth
map F 2 = F \circ F . Here, we can classify them in the light of Theorem 4.4 in [2] for the TCC
rule with f(x) = r x/(1 + x), r > 1.D
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We focus our attention on the region of the parameter plane (H,T ) where H < T < K.
This is because numerical simulations suggest that for H \geq T there might be oscillations
in addition to the fixed points, but these oscillations could be complex attractors or long
transients that eventually result in extinction.

At the outset, we fix some notations for relevant values of the harvesting parameters H
and T . We define H\ast := (r - 1)2/(r+1), which is determined as the solution of the nonlinear
system f(g(x)) = x, f \prime (g(x))g\prime (x) = 1. And we define T \ast > 0 as the unique solution of the
nonlinear equation g \circ f(T \ast  - H\ast ) = T \ast  - H\ast , with g(x) = f(x)  - H\ast . The BCBs for F 2

are determined by F 2(T  - H) = g \circ f(T  - H) = T  - H (with F (T  - H) \not = T  - H) or by
F 2(T ) = f \circ g(T ) = T (with F (T ) \not = T ).

We distinguish the following three cases:
\bullet For 0 < T < T \ast and g \circ f(T  - H) = T  - H, the unstable equilibrium of g \circ f becomes
admissible as H is increased or T continuously changes through an existence BCB for
F 2. Then, the stable and unstable 2-cycles coexist and bifurcation diagrams suggest
that the stable 2-cycle is an essential global attractor.

\bullet For T \ast < T < K and g \circ f(T  - H) = T  - H, the admissible stable fixed point of g \circ f
collides with a break point of F 2. At the collision point, there is a homoclinic orbit;
after the collision, an attracting l-periodic cycle of F becomes admissible, as T or H
are increased, through a period-adding BCB for F 2.We apply the results of subsection
4.2.3 in [13] to the map F 2 that satisfies (F 2)\prime (T  - H) \in (0, 1) for all T \in (T \ast ,K),
H \in (0, H\ast ) such that g \circ f(T  - H) = T  - H.

\bullet For H\ast < T < K and f \circ g(T ) = T , the stable fixed point of f \circ g collides with a
break point of F 2 and becomes admissible as H or T are increased in a variety of
BCBs. Again, we can apply the results of subsection 4.2.3 in [13] to the map F 2

when f(\~x) < T < K. Thus, if (F 2)\prime (T  - H) \in (0, 1) at the bifurcation point, then
we have a period-adding BCB (see Figure 4); otherwise, we expect more complex
bifurcations. However, for H\ast < T < f(\~x), the presence of the unstable 2-cycle
influences the asymptotic dynamics and the one-parameter bifurcation diagram in
Figure 8(C) suggests that the bifurcations are more complex.

The coexisting 2-cycles (stable and unstable fixed points of f \circ g) are destroyed when a
fold SB for F 2 occurs at H\ast .

In Figure 6, existence BCBs of 2-cycles are shown in the light blue solid line, period-adding
and more complex BCBs of 2-cycles in the purple solid line, and fold SBs of 2-cycles in the
dotted red line.

5.4. Boundary-collision bifurcations. When applying the TCC rule to such a simple map
as f(x) = r x/(1 + x), r > 1, the asymptotic population dynamics can also change through
a boundary-collision bifurcation, in which an oscillatory attractor, which is contained in the
absorbing interval I = [max\{ 0, T - H\} , T ], reaches the break points T or 0 and collides with an
unstable equilibrium, x\ast  - or 0. Subsection 1.8.3 in [3] mentions that the boundaries of chaotic
attractors of one-dimensional maps are determined by critical points, i.e., local extrema and
break points, and their images. These types of bifurcation take place when the following hold:

\bullet 0 < T < \~x, H = H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l} < T : For all H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l} < H < min\{ T,H20\} , I = [T  - H,T ] is an
absorbing interval, such that all ICs in (0, x\ast  - ) enter I in finite time. Moreover, for allD
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Figure 4. Illustration of a 2-cycle BCB. Panels in the top row show F as a black dashed curve and
F 2 as a blue solid curve. Panels in the bottom row show f as a black dashed curve and F as a blue solid
curve. In all panels, the red dashed line is y = x, and the TCC rule (2.3) is applied to the Beverton--Holt map
f(x) = 3x/(1 + x) with f(\~x) \approx 1.27 < T = T \ast = 1.5 < K = 2. Across the columns, parameter H is decreased,
giving rise to a homoclinic orbit and several period-adding BCBs. (Left) H = 0.83, with the magenta box in
panel (B1) representing an attracting 2-cycle. (Middle) H = 0.8 such that F 2(T ) = f(f(T ) - H) = T , with a
homoclinic orbit shown in green in panel (B2); it appears when the attracting 2-cycle collides with a break point
of F 2 in a period-adding BCB. (Right) H = 0.77, with an attracting 7-periodic orbit shown in magenta.

x0 \in I and n \in \BbbN , (Fn)\prime (x0) > 1, consequently all n-cycles contained in I are unstable
and the oscillatory attractor contained in I is chaotic, so it collides with T = x\ast  - at
H = H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l}. Then, as H is decreased or T is increased, bifurcation diagrams suggest
that x\ast + becomes an essential global attractor. See Figure 5 for an illustration.

\bullet 0 < T < \~x, H = T \in (H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l}, H20) or 0 < T < f(\~x), H = T > H20 or f(\~x) \leq T < K,
H = T = H10: For values of the harvesting quota H slightly smaller than T , the
absorbing interval I = [T  - H,T ] contains an oscillatory attractor, and the ICs in
either (0, x\ast  - ) or (0,\infty ) enter I in finite time. At H = T , if the attractor in I is
chaotic, it collides with T  - H = 0; and, as H is increased or T is decreased, at least
some positive ICs in I converge to the unstable fixed point 0.
For 0 < T < f(\~x), H = T > H20 or f(\~x) \leq T < K, H = T = H10, bifurcation
diagrams suggest that, as H is increased or T is decreased through H = T , either
there is some sort of bistability between an oscillatory attractor and the unstable
equilibrium 0, or all ICs converge to 0 but there exist long transients (see Figure 8(A)).

In Figure 6, boundary-collision bifurcations are shown in the solid black line.

6. Impact of \bfitT and \bfitH on population dynamics. In this section, we present bifurcation
diagrams to better understand the role played by the harvesting parameters H and T in the
population dynamics of the TCC rule (2.3).D
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Figure 5. Illustration of a boundary-collision bifurcation for decreasing harvest quotas H in the TCC rule
with the Beverton--Holt map f(x) = 2.5x/(1 + x) and T = 0.3 < \~x \approx 0.58. The red dashed line is y = x. We
represent the orbit of xT such that f(xT ) = T in magenta or green if it converges to an oscillatory attractor
or an equilibrium, respectively. (A) Hoscill \approx 0.28 < H = 0.3 < T such that there is an oscillatory attractor
contained in I = [T  - H,T ]. (B) H = Hoscill such that the oscillatory attractor collides with the fixed point
T = x\ast 

 - . (C) H = 0.25 < Hoscill such that, as f(xT ) = T > x\ast 
 - , the point xT < x\ast 

 - belongs to the basin of
attraction of the LAS equilibrium x\ast 

+.

We first plot a two-parameter bifurcation diagram which gives a global picture of the
dynamics in terms of both harvest control parameters. Then, we study some one-parameter
bifurcation diagrams, which help us to understand some features of the dynamics. We will
observe several dynamical regimes, which are indicated with a certain color code in the two-
parameter bifurcation diagram. To facilitate visual orientation, the same color code is used in
the background of the one-parameter bifurcation diagrams to match the dynamical regimes.

6.1. Dynamical regimes. The two-parameter bifurcation diagram in Figure 6 gives a
detailed description of the dynamics and bifurcations of the TCC rule (2.3) with the Beverton--
Holt map f(x) = 3x/(1 + x), in terms of the relevant control parameters H and T . The
bifurcation diagram has been obtained by using the implicit or explicit analytic expressions
previously described in sections 4 and 5. However, we emphasize that, in some particular
cases, the determination of the type of bifurcation is conjectured by using information from
numerical one-parameter bifurcation diagrams; see section 5 for details.

For a general population map f satisfying condition (A), we define and identify the
following dynamical regimes, which exist in certain parameter regions. They are marked with
different colors in the two-parameter bifurcation diagram of Figure 6 and the one-parameter
bifurcation diagrams of Figures 7 to 9. For each dynamical regime, we additionally describe
what the dynamics of CC would look like (cf. Proposition 2.1) and what effect TCC has in
comparison to CC. It is worth mentioning that we use the statements about the asymptotic
dynamics of TCC described in sections 4 and 5; as a consequence, some assertions might come
from evidence observed in numerical one-parameter bifurcation diagrams, e.g., when we assert
that a fixed point is an essential global attractor.

\bullet Unconditional persistence (light blue): TCC guarantees persistence and convergence to
an equilibrium for all initial conditions. This dynamical regime is not possible for the
CC rule with H > 0 and T = 0. In comparison to CC, TCC allows for unconditional
persistence in the following ways:
-- Bistability between extinction and the LAS equilibrium x\ast + > \~x in CC is replacedD
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Figure 6. (A) Main bifurcation curves of TCC with the Beverton--Holt map f(x) = 3x/(1 + x) in the
two-parameter plane of the harvest control variables. Solid lines are for bifurcations involving break points, that
is, BCBs, basin boundary metamorphoses, and boundary-collision bifurcations. Dashed and dotted lines are for
smooth bifurcations (SBs) of F and F 2, respectively. Bifurcations of fixed points are shown in dark blue for
existence BCBs, magenta for period-adding BCBs, and red for fold SBs. Bifurcations of 2-cycles are shown in
light blue for existence BCBs, purple for period-adding or more complex BCBs, and red for fold SBs. Basin
boundary metamorphoses are shown in orange and boundary-collision bifurcations in black. Parameter regions
labeled with B1 exhibit either bistability between the unstable fixed point 0 and another LAS equilibrium (x\ast 

+ or
K) or tristability if there exists an oscillatory attractor instead of long transients. Complex behavior (m-cycles
with m > 3 or chaos) may be expected in regions marked with R. The region labeled with C has an attracting
2-cycle. In the region labeled with EXTINCTION, there may exist long transients for some ICs ending in
extinction or bistability between 0 and an oscillatory attractor. Colored areas indicate dynamical regimes that
are explained in the main text. (B) Enlargement of (A) for 0 < T < \~x. The region labeled with B2 exhibits
bistability between the LAS equilibrium x\ast 

+ and an oscillatory attractor (m-periodic with m > 3 or chaotic),
contained in the absorbing interval I = [T  - H,T ].

by the (essential) global attractor x\ast + or K. This dynamics takes place when the
following hold: 0 < T < f(\~x), 0 < H < min\{ T,H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l}, H20\} (see the top panel in
Figure 3 and Figure 5(C)); f(\~x) \leq T < K, 0 < H < H10 (see Figure 3(C1)); and
K < T < sup\{ f(x) : x > 0\} , H < H20.

-- Extinction in CC is replaced by global attraction to K, when K < T < sup\{ f(x) :
x > 0\} and H20 < H < T .

\bullet Conditional persistence (yellow): Some initial conditions lead to population persis-
tence, whereas other initial conditions lead to extinction. In comparison with CC,
TCC reduces the set of ICs which converge to 0 in several ways:
-- If 0 < T < f(\~x) and T \leq H < H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l} < H20, then T > x\ast  - and some ICs in (0, x\ast  - )

converge to the LAS equilibrium x\ast + instead of being led to extinction.
-- If 0 < T < f(\~x) and max\{ H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l}, T\} < H < H20, then T < x\ast  - and the interval

I = [0, T ] is absorbing. Numerical bifurcation diagrams suggest that some ICs in
(0, x\ast  - ) converge to 0 but other ICs in (0, x\ast  - ) may oscillate in I, at least during
long periods of time before being led to extinction (see Figure 7(A)). All ICs in
(x\ast  - ,\infty ) converge to x\ast + as in the CC rule.D
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-- If K < T < sup\{ f(x) : x > 0\} and T < H, then all ICs in (0,K] converge to the
LAS equilibrium K instead of being led to extinction.

\bullet Unconditional oscillatory persistence of small populations (green): TCC guarantees
persistence for all ICs; there is bistability between x\ast + and an oscillatory attractor.
The latter attracts small population sizes. More specifically, all ICs in (0, x\ast  - ) remain
oscillating in [T  - H,T ] \subset (0, x\ast  - ) instead of being led to extinction in the case of CC.
This situation takes place when 0 < T < \~x and H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l} < H < min\{ H20, T\} (see
Figure 5(A)).

\bullet Unconditional oscillatory persistence of all ICs (brown): TCC guarantees persistence
in the form of oscillatory attractors for all ICs. This dynamical regime does not exist
in CC and occurs in TCC in the following ways:
-- If 0 < T < K and H20 < H < T , then extinction in CC is replaced by persistence

in the interval I = [T  - H,T ] for all ICs.
-- If f(\~x) < T < K and H10 < H < H20, then bistability between the LAS equilibria

x\ast + and 0 is replaced by persistence in I = [T  - H,T ] for all ICs.
\bullet Extinction (grey): All ICs eventually go extinct. This occurs in TCC if 0 < T < K and

H > max\{ T,H20\} . Numerical bifurcation diagrams suggest that either all ICs lead
quickly to extinction or that some positive ICs converge to 0 while others may oscillate
in I = (0, T ], at least during long periods of time before being led to extinction. The
dynamical regime of extinction for all ICs also exists in CC, but the possibility that
some ICs lead to long oscillations before eventual extinction is due to TCC.

We can summarize the main characteristics of Figure 6 by distinguishing the threshold
value relative to the maximum allowed quota. On the one hand, in the case that T > H,
the TCC strategy protects the population from extinction for all initial conditions. We can
broadly distinguish three different variations. First, if T > K, there will be no harvesting,
as the threshold is above the carrying capacity and K is GAS. Second, if H < H20 and
max\{ \~x, H\} < T < f(\~x), then x\ast + is an essential global attractor or GAS. Third, if H > H20

so that the population would collapse under the CC rule, TCC guarantees persistence and
there is an oscillatory attractor in the absorbing interval I for all H < T < K = 2.

On the other hand, in the case that T < H, the TCC strategy is not protective enough
that it guarantees persistence for all initial conditions. Indeed, ifH > H20 such that extinction
is inevitable under CC, this is also the case under TCC---unless T > K, in which case some
initial conditions may persist. However, if H < H20, CC leads to conditional persistence.
TCC does not change this dynamical regime when T < H, but it makes extinction less likely
because the set of initial conditions resulting in extinction is decreased.

In comparison with the PTCC strategy described in [40], we see that the discontinuity
point of F in the TCC rule provokes a huge change in the dynamics. Recall that, for a
population map f under condition (A), the dynamics of PTCC are trivial in the sense that
all solutions converge to an equilibrium.

6.2. One-parameter bifurcation diagrams. In the remainder of this section, we present
some bifurcation scenarios that occur when varying one of the harvest control parameters. The
bifurcation scenarios feature some typical bifurcation sequences occurring in piecewise-smooth
discontinuous maps, according to a specific regularity, such as a Farey tree in a period-addingD
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scenario or a slightly modified truncated skew tent map scenario; a detailed explanation of
both scenarios is given in Chapter 3 of [3]. If we consider other threshold and quota values,
for instance T = 1 and H \in (H20, T ), we observe other features, such as the bandcount
incrementing scenario.

The bifurcation diagrams presented here have been obtained numerically in the following
way for the TCC rule (2.3) with f(x) = 3x/(1+x). For each value of a bifurcation parameter,
we select a random initial condition from a suitable interval, and then we compute a number
of iterations using the map F . After removing transients (600--700 iterations), we plot the
remaining data (50--150 iterations) to get an idea of the asymptotic behavior. In the following
one-parameter bifurcation diagrams, blue points/curves represent asymptotic population sizes.
We recall that the background colors indicate the corresponding dynamical regimes previously
described in subsection 6.1.

In the following subsections, we describe the asymptotic dynamics observed in the one-
parameter bifurcation diagrams; some of them illustrate the ones previously determined in
sections 4 and 5.

6.2.1. Varying the harvest quota \bfitH . Based on the two-parameter bifurcation analysis,
it is obvious that the impact of varying H depends on the value of T . Here, we consider three
different cases for T . We first deal with small values of T (0 < T < \~x), where we can expect
oscillations resulting from TCC. We then consider large values of T (f(\~x) < T < K), where
increased quota values H lead from an equilibrium being an (essential) global attractor to
complex dynamics. Last, we consider intermediate values of T (\~x < T < f(\~x)), where the
bifurcation sequence is more complex than for small or large thresholds. When \~x < T < K,
there is a transition from (essential) global attraction of x\ast + to periodic or complex dynamics;
the transition is to periodic dynamics if f \prime (T ) = g\prime (T  - H) < 1 at the bifurcation point and
it is to chaotic dynamics if f \prime (T ) = g\prime (T  - H) > 1 at the bifurcation point (see subsections
4.2.3 and 4.2.4 in [13]).

First, let us begin with a small threshold value, T = 0.52 < \~x \approx 0.73. As shown in
Figure 7(A), there are five bifurcation points as H is increased from zero. For small to
intermediate harvest quotas H, there is (essential) global attraction to the fixed point x\ast +
of g (light blue background in Figure 7(A)). At the bifurcation value H3 = H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l} \approx 0.51,
there is a boundary-collision bifurcation, creating bistability between the equilibrium x\ast + and
an oscillatory attractor contained in I = [T  - H,T ] (green background in Figure 7(A)).
Their basins of attraction are separated by the unstable fixed point x\ast  - of g. At H4 = T ,
there is a boundary-collision bifurcation as the oscillatory attractor collides with the unstable
fixed point 0; we then have a region of bistability between 0 and x\ast + (yellow background in
Figure 7(A)). Notice that for quota values slightly greater than T , we observe oscillations which
may be an oscillatory attractor or long transients; thus, there may be tristability between 0,
x\ast +, and (long) oscillations. At H5 = H20 \approx 0.54, a fold SB occurs and, for H > H5,
apparently, all ICs converge to 0 (grey background in Figure 7(A)). Furthermore, at H1 =
H12 \approx 0.31 and H2 \approx 0.45 there are two existence BCBs for F and F 2, respectively; however,
we do not plot the unstable 2-cycle in Figure 7(A) since it does not have much influence on
the long-term dynamics.

Second, let us now consider a bifurcation sequence that occurs for large threshold values.D
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Figure 7. Bifurcation sequences for increased harvest quotas H in the TCC rule (2.3). (A) Case for a
small threshold value T = 0.52 < \~x \approx 0.73. The black dashed curve represents the unstable equilibrium x\ast 

 - 
of g. (B) Case for a large threshold value f(\~x) \approx 1.268 < T = T \ast = 1.5 < K = 2 and H \in (0.3, 1.6). The
red solid curve represents the average population size in the parameter region where the 2-cycle of f \circ g is an
attractor. Colored areas indicate dynamical regimes that are explained in subsection 6.1. See the main text for
more details.

This is illustrated in Figure 7(B) for f(\~x) \approx 1.268 < T = T \ast = 1.5 < K = 2. At H1 =
H10 \approx 0.5, there is a period-adding BCB; and at H5 = T , there is a BCB. In between these
two bifurcations (brown background in Figure 7(B)), we observe oscillatory dynamics. As H
is increased from H10 (where f \prime (T ) = g\prime (T  - H) \in (0, 1)), we find a period-adding scenario,
also known as a Farey tree, where between two cycles of periods n and l there is an (n + l)-
cycle. Between the period-adding BCBs at H2 \approx 0.8 and H3 = H\ast = 1, there is an attracting
2-cycle. For some values of the quota H \in (H2, H3), we see that the average population size
is bigger than the GAS equilibrium x\ast + at H1 = H10; this means that an increased harvesting
quota elevates the average population size, which is also known as the hydra effect [1, 27]. At
H4 \approx 1.36, there is a transition from an attracting 3-cycle to chaotic dynamics through a fold
SB for F 3 = f2 \circ g.

Third and last, we consider a bifurcation sequence that occurs for intermediate threshold
values. This is illustrated in Figure 8(A) for H\ast = 1 < T = 1.1 < f(\~x) \approx 1.27. As in
Figure 7(B), we observe a region of oscillatory dynamics (brown background) between the
two bifurcation points at H1 = H20 \approx 0.536 (fold SB) and H4 = T (BCB). But now we
find a different bifurcation sequence for this oscillatory parameter region. At H1 = H20, for
increasing H there is a transition from the globally attracting fixed point x\ast + < \~x to complex
dynamics since f \prime (T ) = g\prime (T  - H) > 1 (Figure 8(A)). For even larger values of H, the complex
dynamics are replaced by a period-adding scenario (Figure 8(B)). When further increasing H,
we observe a sequence of bifurcations similar to those in a truncated skew tent map scenario,
giving rise to an exchange between cyclic and more complex dynamics (Figure 8(C)--(D)). More
precisely, at H3 = H\ast = 1 there is a fold SB for F 2 = f \circ g: as H is decreased, an unstable
and a stable 2-cycle are created; then, at H2 \approx 0.992, the stable 2-cycle becomes virtual, andD
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Figure 8. Bifurcation sequence for an intermediate threshold value T = 1.1 \in (H\ast , f(\~x)) \approx (1, 1.27) when
increasing the harvest quota H in the TCC rule (2.3). The panels show repeated zooms into the bifurcation
parameter H. The black dashed curve in (A) corresponds to the unstable fixed point x\ast 

 - of g. The red dashed
curves represent the unstable 2-cycle of f \circ g. Colored areas indicate dynamical regimes that are explained in
subsection 6.1. See the main text for more details.

after the BCB we observe complex dynamics. If we continue decreasing H (Figure 8(C)), the
unstable orbit plays a role in the dynamics; between two collisions of the bands of the chaotic
attractor with the unstable 2-cycle, the chaotic attractor does not fill the absorbing interval
I = [T  - H,T ]. Note that the two boundary-collision bifurcations are interior crises.

6.2.2. Varying the harvest threshold \bfitT . Now we consider T as a bifurcation parameter
while keeping the quotaH fixed. Before doing so, we note that, according to the two-parameter
bifurcation diagram in Figure 6, the dynamics are strongly influenced by the relative position
of H with respect to the critical value H20. Recall that this is the MSY under the CC rule
and that it is shown as red dashed vertical line in Figure 6.

It is also worth mentioning that for H < H20, a continuous variation (increasing or
decreasing) of the threshold T can be either stabilizing or destabilizing (see Figure 9(A)).D
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Figure 9. Bifurcation sequences when varying the harvest threshold for the TCC rule (2.3). (A): Case with
modest harvest quota H = 0.52 < H20 \approx 0.54. (B): Case with large harvest quota H = 1.1 > H\ast = 1. We find
a small region of transition from apparently chaos to a period-adding scenario. The black dashed curve in (A)
corresponds to the unstable fixed point x\ast 

 - of g. Colored areas indicate dynamical regimes that are explained in
subsection 6.1. See the main text for more details.

However, forH > H20, an increment on the threshold T is always stabilizing (see Figure 9(B)),
but the stable fixed point is the virgin stock K and exists for T > K, that is, for a very
protective harvest rule that leads to no harvesting. By stabilizing we mean that an unstable
equilibrium becomes locally stable. We use the term destabilizing when a stable fixed point
loses its stability. Notice that for threshold values slightly smaller than K, there is always a
period-adding scenario since for H,T \approx K and H < T , we have f \prime (T ) = g\prime (T  - H) \in (0, 1).

We now illustrate the above in two numerical bifurcation diagrams, namely for H =
0.52 < H20 \approx 0.54 and H = 1.1 > H20. We begin with the case H = 0.52 < H20 shown
in Figure 9(A). For small, protective threshold values T < H, there is bistability between
extinction and x\ast + \approx 0.9 (yellow background). At T1 = H, a boundary-collision bifurcation
occurs and replaces the LAS extinction equilibrium, to which initial conditions in [m,M ]
converge, by an oscillatory attractor contained in I (green background). Hence, there are two
regions of bistability for T < T2 = x\ast  - \approx 0.57. For T \in (x\ast  - , x

\ast 
+ + H), we observe that the

equilibrium x\ast + is GAS. Finally, there are two period-adding BCBs at T3 = x\ast + + H \approx 1.43
and T4 = K = 2, the first one destabilizing the dynamics and the second one stabilizing the
dynamics at the virgin stock level where harvesting no longer takes place.

Finally, let us consider the case H = 1.1 > H20 in Figure 9(B). For small thresholds
T < H, all ICs converge to the extinction equilibrium (grey background). For very protective
thresholds T > K, harvesting is ceased and the virgin stock size K is GAS (light blue back-
ground). In between these two extremes (brown background), there are oscillatory population
dynamics. More specifically, they emerge at T = H in a boundary-collision bifurcation, which
replaces extinction by complex dynamics. As T is increased, we observe a transition from
apparently chaotic dynamics to a period-adding scenario. At T = K, the transition from
oscillations to the GAS equilibrium K occurs in a period-adding BCB.D
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7. Average yield and harvest frequency. Here, we consider a more exploitation-oriented
perspective by studying the average yield and harvest frequency as functions of the harvest
control parameters. We first recall and extend some theoretical results before turning to
numerical simulations.

A rigorous theoretical study of the MSY for the CC rule and the TCC rule, in the particular
case of the Beverton--Holt model (2.2), can be found in [2]. Assuming that the management
objective is the indefinite survival of the population, [2] concludes that, for the CC rule, the
MSY is H20 = f(\~x)  - \~x and can be attained if and only if x0 \geq \~x. However, if x0 < \~x,
then the optimal catch is H\mathrm{o}\mathrm{p}\mathrm{t} = f(x0)  - x0 < H20. Recall that \~x is the population size
that sustains the MSY. That is, even for the optimal choice of the harvesting quota H, the
MSY can be attained only for initial conditions exceeding the biomass level corresponding
to MSY. For the TCC strategy with T = f(\~x), [2] shows that the MSY is equal to H20 and
attainable for all ICs. In the following, as an expansion of the work in [2], we study the
average yield Y and harvest frequency HF for the TCC rule applied to the Beverton--Holt
model f(x) = r x/(1 + x), r > 1.

7.1. Analytical results. In some particular cases, it is possible to carry out an analytical
study of both the average yield and the harvest frequency, e.g., when an equilibrium or a
2-cycle is an (essential) global attractor. First, assume that T > K and H < T ; then K
is GAS. So for all ICs, after removing transients, we have Y = 0 and HF = 0. That is,
there is no harvesting in the long run. However, if T \in [\~x, f(\~x)] and H = H20 < T , then
the equilibrium \~x is an (essential) global attractor. In this case, for almost all ICs we have
Y = H20 and HF = 1. That is, we can harvest at the MSY all the time.

Now we consider (H,T ) values such that F has a 2-cycle which is an (essential) global
attractor (see the region labeled with C in Figure 6(A)). The 2-cycle \{ x1, x2\} satisfies f(x1) <
T < f(x2), and thus Y = H/2 and HF = 1/2. In this case, the average yield attains a local
supremum at H = H\ast = (r  - 1)2/(r + 1) and T = T \ast (g \circ f(T \ast  - H\ast ) = T \ast  - H\ast ). It is
easy to prove that H\ast < H20 = (

\surd 
r  - 1)2, for all r > 1, which means that the MSY is not

attainable. However, numerical simulations show that in spite of having harvest moratoria
every other generation, the average yield can be close to H20 (see Figure 10(B)).

7.2. Numerical results. The presence of more complex dynamics or bistability makes it
difficult to develop a rigorous analytical study of the average yield and harvest frequency.
Thus, we study some numerical simulations for the population map f(x) = 3x/(1+ x), which
help us to better understand the influence of T and H on Y and HF .

We begin by considering two different values of the threshold, namely T = 0 and T = f(\~x).
For each of the fixed threshold values, we choose a random initial condition x0 uniformly
distributed in the interval [0, sup\{ F (x) : x > 0\} ] = [0, r  - H] = [0, 3 - H]. Then, we vary the
fixed quota and for each value ofH we run the system of equations (2.3)--(2.5) 650 times. After
removing transients (600 iterations), we compute the average yield and harvest frequency for
the last 50 iterations as follows:

Y =
1

50

650\sum 
n=601

Yn, HF =
1

50

650\sum 
n=601

HFn,

where, at generation n \in \BbbN , HFn := 1 if harvesting takes place and HFn := 0 if there is noD
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(A)

H20

\mathrm{M}\mathrm{S}\mathrm{Y}

Harvesting quota, H

(B)

H20 H\ast 

\mathrm{M}\mathrm{S}\mathrm{Y}

Harvesting quota, H

Figure 10. Average yield (green lines) and harvest frequency (orange lines) for (A) the CC rule with T = 0
and (B) the TCC rule with T = f(\~x). The blue curve represents the LAS equilibrium x\ast 

+. The red curve is the
mean population size of the 2-cycle. The population bifurcation diagram is shown in grey. Simulations are for
(2.3)--(2.5) with the Beverton--Holt map f(x) = 3x/(1 + x); see the main text for more details.

harvesting.
First, the case T = 0 (CC rule) is presented in Figure 10(A). For quota values H \leq H20,

we observe bistability. If x0 < x\ast  - , the population perishes in a finite number of generations,
so after removing transients we have Y = 0 and HF = 0. If x0 > x\ast  - , the population converges
to the LAS equilibrium x\ast +, so Y = H and HF = 1. When H > H20, as 0 is GAS, after
removing transients we have Y = 0 and HF = 0. Therefore, Figure 10(A) illustrates that
H20 is the MSY for the CC rule.

Second, the case T = f(\~x) is presented in Figure 10(B). We observe two main improve-
ments in comparison with the CC rule. For H \leq H20, the equilibrium x\ast + is a global attractor,
so for all positive ICs, Y = H and HF = 1 (after removing transients). For H \in (H20, T ), the
population persists in an oscillatory manner and the average yield is smaller but quite close
to MSY. Notice that for the CC rule it is quite risky to harvest at MSY, because Y = 0 for
all H > H20. However, for T = f(\~x) and H \in (H20, H

\ast ), Y remains very close to MSY and
harvesting takes place at least every other generation as HF \geq 1

2 .
Now, we vary the threshold and fix the quota value H = H20, which is the MSY for

T \in [0, f(\~x)]. In Figure 11, we show the average yield and harvest frequency as the threshold
T increases, that is, as the harvesting strategy becomes more protective. If T \in (0, \~x), we
observe bistability as for the CC rule, but the set of positive initial conditions for which
Y = H20 and HF = 1 increases with increasing T (not explicitly illustrated in Figure 11).
Moreover, for T \in [H20, \~x), Y > 0 for all positive ICs. The MSY is attainable for all positive
ICs, if and only if T \in [\~x, f(\~x)], since H20 < \~x. For T \in (f(\~x),K), the population persists in
an oscillatory manner, and there are some generations of harvest moratoria and average yields
smaller than H20. When T is close to K = 2, the harvesting strategy is very conservative and
the average yield is almost null.

8. Discussion and conclusions. The TCC strategy combines CC harvesting with a thresh-
old population size, below which harvesting is not allowed. We have shown in this paper that
TCC is, not surprisingly, a protective strategy in the sense of promoting population persis-
tence, where CC harvesting would lead to stock collapse. The CC strategy is risky, becauseD
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0.0 1.0 2.0
0.0

1.0

2.0

Threshold, T

H20 \~x f(\~x)

MSY

Figure 11. Average yield (green lines) and harvest frequency (orange lines) for the TCC rule with a fixed
quota H = H20 and increasing harvesting thresholds. The population bifurcation diagram is shown in grey.
Simulations are for (2.3)--(2.5) with the Beverton--Holt map f(x) = 3x/(1 + x); see the main text for more
details.

the MSY quota is at a fold bifurcation point; increasing the quota slightly moves the fishery
into the extinction regime. With TCC, the MSY is still obtained for the same quota value
(as already shown in [2]), but for thresholds T > H20 there is a ``buffer"" for harvest quotas
H \in (H20, T ) guaranteeing population persistence for all initial conditions even if the quota
is beyond the MSY value that would lead to collapse under CC harvesting (see, e.g., Figures
7(A), 8, and 9). Remarkably, the average yield has been found to be almost as high as the
MSY in this buffer range (see Figure 10(B)). Also, the harvest frequency remains close to
100\% near the MSY value (see Figures 10(B) and 11). This observation coincides with a
similar finding in a specific model of Baltic Sea cod [30]. TCC therefore seems viable for
adaptive management, allowing quotas around and beyond the MSY, which typically comes
with many problems for fisheries [39].

TCC also makes the fishery more resilient against perturbations of the population size,
because it guarantees deterministic persistence for all initial conditions or diminishes the set
of initial conditions converging to the extinction state. Taken together with the buffer zone for
enhanced quota levels, TCC is remarkably protective to the stock while providing high yields
with almost no fishing moratoria. TCC thus remedies many of the well-known and notorious
problems of the CC strategy (high extinction risk) and pure threshold harvesting (high yield
variability and fishery closures).

In TCC, it is possible that the population size after harvesting falls below the threshold.
This could seem strange if the threshold is viewed as a minimum below which the population
size should not fall. However, our results show that despite this possibility TCC is still
beneficial for both population conservation and sustained yield. Only when the harvesting
quota is so high that it exceeds the threshold (H > T ) is population extinction possible. To
avoid population sizes falling below the threshold, one could devise alternative strategies with
multiple thresholds. An example is the PTCC rule, where the escapement is at least as large
as the threshold [40].

For certain control parameter values, TCC can induce oscillations in population size. In
the absence of harvesting, we assume in this paper undercompensatory population growth
like in the Beverton--Holt map, which always yields stable dynamics and not even dampedD
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oscillations. We are not aware of many simple control rules like TCC that can destabilize
Beverton--Holt dynamics. The oscillations could be formed by alternating phases of population
size decay (overharvesting above threshold) and recovery (population growth below threshold).
Hence, TCC induces an effect similar to overcompensation, i.e., reduced population growth
at large population sizes, which is well known to induce oscillations.

The model in this paper can exhibit rich and complex dynamics. In some dynamical
regimes, we know for sure that oscillations exist (see Figure 5(A)), while in other cases there
may be long transients (see Figure 7(A)). If the long transients are actually oscillatory attrac-
tors, there is tristability. In practice, it might not matter whether the oscillations are transient
when they are on a long time scale [24]. In parameter regions with an attracting 2-cycle (see
Figure 7(B)), we find a hydra effect. This effect cannot occur in nonoscillatory mode (for
T < K) since the attracting fixed points decrease as harvesting parameters increase.

Probably the most notorious feature of the TCC rule from a dynamical systems point
of view is the discontinuity at the harvesting threshold. This makes the TCC rule a dis-
continuous piecewise-smooth map. We observe a wide range of dynamic phenomena ranging
from boundary-collision bifurcations and basin boundary metamorphoses over multistability
and homoclinic orbits to BCBs. The latter come in the form of existence and period-adding
BCBs. The boundary-collision bifurcations come in the form of both boundary crises (Figures
7(A)--(B), 8(A), and 9(A)--(B)) and interior crises (Figure 8(C)). The nonsmooth bifurcations
are related to invariant sets colliding with the break point, which is given by the harvesting
threshold. Reference [5] also studied a discontinuous one-dimensional map with no harvesting
below a threshold but with proportional (rather than CC) harvesting above the threshold.
Reference [5] found BCBs as well. Note that related control rules like pure threshold harvest-
ing, CC, proportional harvesting, or PTCC are continuous, so their dynamical behavior (see,
e.g., [2, 40, 29]) is less rich.

Regarding nonsmooth bifurcations in discontinuous piecewise-smooth one-dimensional
dynamical systems, we also find some interesting features. First, it is mentioned in [3] that
although we usually study bifurcations of attractors, bifurcations of other invariant sets can
also essentially influence the dynamics and are worth being investigated. This is the case for
the existence BCB of the unstable 2-cycle in Figure 8(C). However, we observe in Figure 7(A)
that for smaller values of the threshold T , the same type of bifurcation does not have a sig-
nificant influence on the dynamics. Second, there are nonsmooth bifurcations for the TCC
map which appear in a manner different from the one described in [3]. For instance, basin
boundary metamorphoses and boundary-collision bifurcations occur without the existence of
a homoclinic orbit (we find homoclinic orbits at period-adding BCBs; see Figures 3 and 4).
Basin boundary metamorphoses are simple; that is, they do not involve fractal basins of at-
traction as in [23]. Boundary-collision bifurcations are due to the nonsmoothness of the TCC
map, which is not the case for PTCC (see section IV in [40]). There are also some BCBs dif-
ferent from those described in [3], for instance the existence BCB. Third, we observe typical
sequences of bifurcations in one-parameter bifurcation diagrams, the period-adding scenario
(see Figures 7 to 9), and an apparently truncated skew tent map scenario (see Figure 8). The
last scenario does not exactly follow the structure defined in section 3.2 of [3], because it is
not possible to have a degenerated flip bifurcation since (F 2k)\prime (x) > 0 for all x > 0.

This paper highlights the protective function of thresholds and the complex dynamicsD
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that are possible due to a threshold-induced discontinuity. TCC is a very simple harvesting
strategy, but it could provide insights for more complicated control rules. Thresholds form
an important part of current harvest control rules [12, 50, 18]. While many of them are
designed to be a continuous function, in practice there could be a discontinuous jump in the
harvesting escapement around the threshold level for a number of reasons. On the one hand,
one should have in mind that population size estimates are uncertain and often delayed. On
the other hand, thresholds could prompt certain behaviors of fishermen or certain responses
of institutions. It will be interesting to account for such aspects as well as further model
variants such as overcompensatory population dynamics, depensation, ecosystem effects, and
age or spatial structure.

Appendix A.

A.1. Proofs of Propositions 4.1 and 4.2. We begin providing the following result on the
existence of positive fixed points of the map F defined in (2.4). Throughout this subsection,
let xT > 0 be the unique solution of f(x) = T .

Proposition A.1. Assume that f satisfies (A). Denote by \~x the unique solution of f \prime (x) = 1.
Then the following hold:

(i) If T > K, then K is the unique positive equilibrium of F for all H > 0.
(ii) If f(\~x) \leq T < K, then x\ast + \in [\~x,K) is the unique positive fixed point of F if and only

if H \leq H10 = T  - \widetilde x\ast +, where f
\bigl( \widetilde x\ast +\bigr) = T .

(iii) If 0 < T < f(\~x), then the following hold:

(a) If H < H12 = T  - \widetilde x\ast  - , where f
\bigl( \widetilde x\ast  - \bigr) = T , then x\ast + \in [\~x,K) is the unique positive

fixed point of F .
(b) If H12 \leq H < H20 = f(\~x) - \~x, then F has two positive fixed points x\ast  - < \~x < x\ast +.
(c) If H = H20, then \~x is the unique positive equilibrium of F .

In the rest of the cases, 0 is the unique fixed point of F .

Proof of Proposition A.1. From the definition of the map F in (2.4), we have the following:
If T > K = f(K) (as f is an increasing function, xT > K), then F (x) = f(x) for all

x \in (0, xT ), and F (x) = g(x) = f(x) - H < x - H < x for all x > xT .
If T < K = f(K) (as f is a strictly increasing function, xT < K), then F (x) = f(x) > x

for all x \in (0, xT ), and F (x) = 0 or F (x) = g(x) = f(x) - H for all x > xT .
Thus, we can conclude that K is a fixed point of F if and only if T > K, and for T < K

the positive fixed points of F are the ones of g.
Since g\prime (x) = f \prime (x) > 0 and g\prime \prime (x) = f \prime \prime (x) < 0, by the mean value theorem, g can have at

most two positive fixed points x\ast  - \leq \~x \leq x\ast +. Now, the proofs of (ii) and (iii) follow easily.

The proof of Proposition 4.1 follows from Proposition A.1 and the following technical
result, which is a simple generalization of Lemma 1 in [6]. Note that this result was established
in [40], in order to prove stability of fixed points for the PTCC harvesting strategy.

Lemma A.2. Let h : (a, b)  - \rightarrow (a, b) be a continuous function defined on a real interval
(a, b) ( - \infty \leq a < b \leq \infty ), such that h has a unique fixed point x\ast with x < h(x) < x\ast for all
x \in (a, x\ast ), and a < h(x) < x for all x \in (x\ast , b). Then, x\ast is a global attractor of h.D
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Proof of Proposition 4.1. The existence of the different fixed points of F is given in Propo-
sition A.1.

To prove (i), we apply Lemma A.2 to the map F| (0,xT ) = f| (0,xT ); then K is a global
attractor in (0, xT ). If H < T , then 0 < g(xT ) < F (x) = f(x)  - H < x  - H < x for all
x > xT > K and g(xT ) = f(xT ) - H = T - H < T . Thus, all initial conditions x0 > xT enter in
(0, xT ) in finite time and converge to K. If H \geq T , then g(x) = 0 for all x \in [xT ,M ] = [m,M ].
Moreover, for all x > M > xT , the proof follows as in the case H < T .

Now, we consider the cases (ii) and (iii)(a); from Proposition A.1 we know that x\ast + is the
unique positive fixed point of F . Moreover, x\ast + = xT if H = H10 since F (xT ) = g(xT ) =
f(xT ) - H10 = T - (T - xT ) = xT , and x\ast + \in (xT ,K) otherwise. The proof of case (ii) withH =
H10 is a direct consequence of the following conditions fulfilled by f and g: F (x) = f(x) > x
for all 0 < x < xT < K; F (x) = g(x) < x for all x > xT ; and T = f(xT ) > F (xT ) = g(xT ).
In the remainder cases, we apply Lemma A.2 to the map F| (xT ,\infty ) = g| (xT ,\infty ), and we have
that x\ast + is GAS in (xT ,\infty ). For all x \in (0, xT ), F (x) = f(x) > x; and since f(xT ) > g(xT ),
we can conclude that all initial conditions in (0, xT ) enter in (xT ,\infty ) in finite time and thus
converge to x\ast +.

The proofs of cases (iii)(b) and (iii)(c) are easier, so we leave it to the reader.

Finally, we provide the proof of Proposition 4.2, which is straightforward.

Proof of Proposition 4.2. In all cases, since T \leq K = f(K), we have F (x) = f(x) > x
for all x \in (0, xT ). In addition, F (x) = max\{ 0, g(x)\} for all x \geq xT . In cases (a), (b),
and (c), for all x \geq xT , g(x) = f(x)  - H < x. While in case (d), g(x) < x if and only if
x \in [xT , x

\ast 
 - ) \cup (x\ast +,\infty ).

Consequently, it is clear that there exists an invariant or strictly mapped into itself interval
I = [max\{ 0, g(xT )\} , f(xT )] = [max\{ 0, f(xT )  - H\} , T ] = [max\{ 0, T  - H\} , T ]. It also follows
that all initial conditions enter in I in finite time in cases (a), (b), and (c). However, in case (d),
we can assert that just the ICs in (0, x\ast  - ) enter in I in finite time since from Proposition 4.1
we have that (x\ast  - ,\infty ) is the basin of attraction of x\ast +.

Finally, it remains to prove that I does not contain any positive fixed point. The cases (a),
(b), and (c) are trivial since under the corresponding conditions the map F has no positive
fixed points. In case (d), the positive fixed points of F are x\ast  - < x\ast +, and the statement follows
since H > H\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{l}\mathrm{l} implies that T < x\ast  - .
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