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Strange periodic attractors with complicated, long-lasting transient dynamics are
found in a prey-predator model with disease transmission in the prey. The model
describes viral infection of a phytoplankton population and grazing by zooplank-
ton. The analysis of the three-dimensional system of ordinary differential equa-
tions yields several semi-trivial stationary states, among them two saddle-foci,
and the sudden (dis-)appearance of a continuum of degenerated nontrivial equili-
bria. Along this continuum line, the equilibria undergo a fold-Hopf (zero-pair)
bifurcation (also called zip bifurcation). The continuum only exists in the bifurca-
tion point of the saddle-foci. Especially interesting is the emergence of strange per-
iodic attractors, stabilizing themselves after a repeated torus-like oscillation. This
form of coexistence is related to persistent and permanent ecological communities
and to bursting phenomena.
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INTRODUCTION

Conceptual prey-predator models have been used often and successfully
to model phytoplankton-zooplankton interactions and to elucidate
mechanisms of spatio-temporal pattern formation such as patchiness

1Partly presented at the meeting ‘‘Computational and Mathematical Population
Dynamics,’’ Trento=Italy, June 21–25, 2004.
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and blooming (Segel and Jackson, 1972; Steele and Henderson, 1981;
Scheffer, 1991; Malchow, 1993; Pascual, 1993). Little is known about
marine viruses and their role in aquatic ecosystems and the species that
they infect (Fuhrman, 1999). Suttle et al. (1990) have experimentally
shown that viral disease can infect bacteria and phytoplankton in
coastal water. There is some evidence that viral infection might acceler-
ate the termination of phytoplankton blooms (Jacquet et al., 2002;
Gastrich et al., 2004). However, despite the increasing number of
reports, the role of viral infection in the phytoplankton population is still
far from understood.

Mathematical models of the dynamics of virally infected phyto-
plankton populations are rare as well. There is the already classical
publication by Beltrami and Carroll (1994) and more recent work by
Malchow et al. (2004, 2005). They observed oscillations and waves in
a phytoplankton-zooplankton system with Holling-type II and III
grazing under lysogenic viral infection and frequency-dependent
transmission. The latter is also called proportionate mixing or stan-
dard incidence (Nold, 1980; Hethcote, 2000; McCallum et al., 2001).

We investigate the local dynamics of phytoplankton with lytic infec-
tion and frequency-dependent transmission as well as zooplankton
with Holling-type II grazing. We show that coexistence in the form
of a strange periodic attractor is possible even under nonstationary
conditions. One section is devoted to the similarities with the concepts
of permanence in ecological communities.

THE MODEL

Scheffer (1991) used the Rosenzweig-McArthur formulation (1963) for
modeling the prey-predator dynamics of phytoplankton P and zoo-
plankton Z. It reads for P, Z and time t in dimensionless quantities

dP

dt
¼ rPð1� PÞ � aP

1þ bP
Z; ð1Þ

dZ

dt
¼ aP

1þ bP
Z�m3 Z: ð2Þ

There is logistic growth of the phytoplankton with intrinsic rate r and
Holling-type II grazing with maximum rate a=b as well as natural
mortality of zooplankton with rate m3. The growth rate r is scaled
as the ratio of local rate rloc and a mean hri. The effects of nutrient sup-
ply and planktivorous fish are neglected because we focus on the influ-
ence of the viral infection of phytoplankton. The phytoplankton
population P is split into a susceptible part S and an infected portion I.
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Zooplankton Z grazes on both susceptible and infected phytoplank-
ton. Then, the model system reads for symmetric inter- and intraspe-
cific competition of susceptible and infected

dS

dt
¼ r1Sð1� S� IÞ � aS

1þ b ðSþ IÞZ� k
SI

Sþ I
; ð3aÞ

dI

dt
¼ r2Ið1� S� IÞ � aI

1þ b ðSþ IÞZþ k
SI

Sþ I
�m2 I; ð3bÞ

dZ

dt
¼ aðSþ IÞ

1þ bðSþ IÞZ�m3 Z: ð3cÞ

Frequency-dependent transmission rate k as well as an additional
disease-induced mortality of infected (virulence) with rate m2 are
assumed. The intrinsic growth rates of susceptible and infected are
r1 and r2, respectively. In the case of lysogenic infection, it holds
0 � r2 � r1, whereas in the case of lytic infection r2 � 0 � r1. Then,
the first term on the righthand side of Eq. (3b) describes the losses
due to natural mortality and competition.

THE STATIONARY DYNAMICS

We now search for stationary and oscillatory solutions of the system
(3a–3c). To do that, it is simplified through a convenient transform-
ation, then by describing the dynamics of the total phytoplankton
population P ¼ Sþ I and the prevalence i ¼ I=P. The vector of popu-
lation densities is X ¼ fP; i;Zg. The model equations read

dP

dt
¼ ½r1ð1� iÞ þ r2i�ð1� PÞP� aP

1þ bP
Z�m2iP; ð4aÞ

di

dt
¼ ½ðr2 � r1Þð1� PÞ þ ðk�m2Þ�ð1� iÞi; ð4bÞ

dZ

dt
¼ aP

1þ bP
Z�m3Z: ð4cÞ

System (4a–4c) possesses the following (semi-) trivial equilibria
E ¼ fPS; iS;ZSg with

dP

dt

���
X¼E
¼ di

dt

���
X¼E
¼ dZ

dt

���
X¼E

¼ 0 :

1) E00 ¼ f0; 0; 0g.
The trivial state is always unstable.

2) E01 ¼ f0; iS
01; 0g with iS

01 ¼ 1.
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This disease-induced extinction of the total prey population occurs
for r2 < m2 < kþ r2 � r1.

3) E1 ¼ fPS
1 ; 0; 0g with PS

1 ¼ S ¼ 1.
Only the susceptible prey species survive at their carrying capacity
for k < m2 and m3 > a=ð1þ bÞ.

4) E2 ¼ fPS
2 ; i

S
2 ; 0g with PS

2 > 0; iS
2 > 0.

a) E21 ¼ fPS
21; i

S
21; 0g with PS

21 ¼ I ¼ 1�m2=r2; i
S
21 ¼ 1.

Only the infected survive for m2 < r2;m2 < ðr2=r1Þ k and

aPS
21=ð1þ bPS

21Þ < m3.
b) E22 ¼ fPS

22; i
S
22; 0g with

PS
22 ¼ 1� k�m2

r1 � r2
; iS

22 ¼
r1

k
k�m2

r1 � r2
:

The stability ranges of this solution can easily be found by some
computer algebra tool. However, the expressions are rather lengthy
and omitted here.

5) E3 ¼ fPS
3 ; 0;Z

S
3g with

PS
3 ¼

m3

a�m3b
; ZS

3 ¼
r1

a
ð1þ bPS

3 Þð1� PS
3 Þ:

The infected go extinct for too high virulence or too low trans-
mission rate. The remaining textbook example of the P-Z prey-
predator model is well studied. The solution can be a stable node
or focus as well as, after a Hopf bifurcation, an unstable focus
bound by a stable limit cycle.

Nontrivial equilibria exist for a special parameter combination.
In this case, there is a continuum of stationary states:

6) EZS
4
ðiÞ ¼ fPS

4 ; i;Z
S
4 ðPS

4 ; iÞg with PS
4 > 0; 0 < i < 1;ZS

4 ðPS
4 ; iÞ > 0.

From Eq. (4b) and (4c) one finds the expressions

PS
41 ¼ 1� k�m2

r1 � r2
and ð5aÞ

PS
42 ¼

m3

a�m3b
; ð5bÞ

which define two parallel planes independent of i and Z in
ðP� i� ZÞ phase space. These planes are orthogonal to the
ðP� ZÞ and parallel to the ði� ZÞ plane. Both must coincide; that
is, the system parameters must obey the relationship

1� k�m2

r1 � r2
¼ m3

a�m3b
¼ PS

4 : ð6Þ
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From Eq. (4a), one obtains the plane

Z ¼ ZðP; iÞ ¼ 1þ bP

a

n
r1ð1� PÞ þ ½ðr2 � r1Þð1� PÞ �m2�i

o
ð7Þ

Then, all points EZS
4
ðiÞ lying on the straight intersection line of

planes (6) and (7), which is given by

ZS
4 ðPS

4 ; iÞ ¼ ZðPS
4 ; iÞ with PS

4 as in (6) ; ð8Þ

independent of i for 0 < i < 1 are stationary states. This line of
stationary states is a heteroclinic connection between the semitri-
vial equilibria E2 and E3.

For m3 < aðb� 1Þ=ðbðbþ 1ÞÞ, the P� Z subsystem has an unstable
focus bound by a stable limit cycle. In the stationary case (6), numeri-
cal analysis shows that all equilibria EZS

4
ðiÞ on line (8), including E2 and

E3, are degenerated, say their third eigenvalue is zero. The upper part
of line (8) consists of degenerated unstable foci. A fold-Hopf (zero-pair)

FIGURE 1 Stationary dynamics of system (4a–4c) with coexistence of all
three populations. The trajectory starts at the upper unstable part of the line
of stationary points, passes the fold-Hopf bifurcation point, and finally relaxes
on the neutrally stable lower part. Parameters: r1 ¼ 1, r2 ¼ 0, a ¼ b ¼ 5,
k ¼ 4=5 from Eq. (6), m2 ¼ 2=15, m3 ¼ 5=8. Initial conditions: P0 ¼ 0:335,
i0 ¼ 1=5, Z0 from Eq. (8). The straight line is the continuum of equilibria
EZS

4
ðiÞ, lying on the shaded plane (7).
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bifurcation point (Kuznetsov, 1995; Nicolis, 1995) separates the foci
from the lower part closer to the ðP� iÞ plane with degenerated stable
foci. A corresponding numerical simulation, starting on the unstable
upper branch, is shown in Figure 1. This kind of bifurcation has also
been called a zip bifurcation (Farkas, 1984), because a singular curve
folds into periodic solutions when a parameter is varied (when the
prevalence decreases).

The closer the initial condition to the ðP� ZÞ plane, the longer is the
journey through phase space. The location of the final stationary state
on the line strongly depends on the initial conditions. Hence, the final
positions are only neutrally stable. This remains true in the case that
the intersection point of (8) in the P� Z subsystem is a stable focus or
stable node, and the line (8) becomes a continuum of stable solutions.
The latter case is not presented here.

The growth rate of infected r2 has simply been set to zero. This
choice describes cell lysis of infected phytoplankton cells and nonsym-
metric competition of infected and susceptible; the infected still have
an impact on the growth of susceptible by shading and need for space,
but not vice versa. Furthermore, m2 stands for an effective mortality
(virulence plus natural mortality) of the infected.

STRANGE PERIODIC ATTRACTORS

The strong parameter relationship (6) is surely not realistic. The
probability to meet such a setting in a natural system is almost zero.
Therefore, nonstationary situations will be simulated now, with para-
meter settings when the planes (5a) and (5b) do not coincide and the
intersection lines with the plane of Eq. (7) are no longer stationary.

At first, virulence is increased. Numerical bifurcation and stability
analysis show that in this case E2 is a saddle-focus with a stable two-
dimensional manifold and an unstable one-dimensional manifold. In
the ðP� ZÞ plane, E3 is also a saddle-focus, but with an unstable
two-dimensional manifold and a stable one-dimensional manifold. In
Figure 2, the trajectory starts in the upper corner and approaches
the lower end point of the right-hand line (5a) in the ðP� iÞ plane
which is the semi-trivial stationary state E2. This is the mentioned
saddle-focus with stable oscillation but unstable in direction of Z.
Therefore, the trajectory is shot along the heteroclinic connection to
the ðP� ZÞ plane and gets into the sphere of influence of the end point
of the left-hand line (5b). This is also a semi-trivial saddle-focus,
namely E3 with unstable oscillation and stable in Z direction. Hence,
the trajectory bounces back, spirals down the lines and ‘‘tube-rides’’
up again and again. On the way up, it is ‘‘reinjected’’ (Nicolis, 1995)
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FIGURE 2 Nonstationary dynamics of system (4a–4c) with coexistence of
all three populations. Parameters: m2 ¼ 7=50, all others as in Fig. 1. Inital
condition: P0 ¼ 1:01, i0 ¼ 0:1, Z0 ¼ 0:001.
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and tunnels through the two formed funnels. This is illustrated in Fig-
ure 2a. It resembles the movement on a torus, where the center hole of

FIGURE 3 Nonstationary dynamics of system (4a–4c) with coexistence of all
three populations. Parameters: m2 ¼ 27=200, all others as in Fig. 1. Inital
condition: P0 ¼ 1=3, i0 ¼ 0:825, Z0 ¼ 0:0015.
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the torus is shrinked to a thin tube. However, the precessing trajectory
gets ‘‘phase-locked’’ and finally, for long times, approaches a periodic
attractor (Langford, 1983: 233). This is shown in Figure 2b. The oscil-
lation takes place in a plane which is orthogonal to the ði� ZÞ plane.

FIGURE 4 Dynamics of system (4a–4c). Parameters as in Fig. 1 except for
m2. Inital condition: P0 ¼ 1:01, i0 ¼ 0:1, Z0 ¼ 0:001.
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The attractor surrounds the two intersection points of the two lines of
nonstationary points and the plane of oscillation.

Because of the long-lasting, peculiar approach toward the asymp-
totic oscillations, we call the attractor a strange periodic attractor.
Clearly, the attractor is not chaotic (sometimes called strange). In
order to highlight the exciting transient dynamics, which actually
occurs during a rather long time, we label it as ‘‘strangely periodic.’’

For further illustration, the temporal development of the total prey
density and its unfolded next-maximum map are given in Figure 3.
The latter resembles a damped oscillation.

The location of the asymptotic periodic attractor is independent of
the initial conditions as in the case of a limit cycle. For further increas-
ing values of m2, the behavior of the system becomes simpler. The dis-
tinct funnel formation disappears, and the periodic attractor stabilizes
faster and faster. For too high virulence, the infected go extinct and
the system oscillates in the P� Z subsystem. This is illustrated in
Figure 4.

For virulences below the stationary value given in Figure 1, E2

becomes a stable and E3 an unstable focus, respectively. Numerical
simulations yield that zooplankton dies out and the dynamics relaxes
to E2 in the P� i subsystem, cf. Figure 5.

FIGURE 5 Dynamics of system (4a–4c). Parameters: m2 ¼ 0:1, all others as
in Fig. 1. Inital condition: P0 ¼ 1:01, i0 ¼ 0:1, Z0 ¼ 0:001.
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In summary, this means that E2 has undergone a bifurcation from
an unstable saddle-focus to a stable focus. At this bifurcation point, the
continuum of degenerated nontrivial equilibria EZS

4
ðiÞ appeared simul-

taneously. A zero-pair Hopf bifurcation took place along this con-
tinuum line.

NON-EQUILIBRIUM COEXISTENCE AND PERMANENCE

The strange periodic attractor is biologically interesting, because it
allows for coexistence with all three species positive in a substantial
parameter range. This makes the model much more realistic, because
the special condition (6) unlikely holds exactly in reality. The nontri-
vial oscillations in the interior of the first octant are remarkable,
because no nontrivial stationary state exists. So where does the attrac-
tor come from? What are the mechanisms behind the distinct joint
tube-ridings (funnel formation) and back-twirlings of the strange
periodic attractor?

The second question is left as an open problem for future work.
Here, we want to discuss the first question from the point of view of
persistence theory and permanence. These concepts have attracted
much interest in the ecological literature and are still a growing field.
Their roots can be traced back to the ‘‘principle of competitive
exclusion’’ that states, roughly speaking, that two or more consumer
species cannot coexist on a single resource (Gause, 1934; Hardin,
1960) or the famous ‘‘paradox of the plankton’’ (Hutchinson, 1961).
Ayala (1969) provided an experimental invalidation of the competitive
exclusion principle, and later theoretical work showed that it is
restricted to assumptions such as a linear per head growth rate of
the resource and interactions of Lotka-Volterra-type (Armstrong and
McGehee (1980) and references therein).

One example leading to coexistence is the model by McGehee and
Armstrong (1977), in which two predators y1 and y2 share a common
prey x:

dx

dt
¼ Rx 1� x

K

� �
�Mxy1 �

Ax

1þ Bx
y2; ð9aÞ

dy1

dt
¼ Exy1 �D1y1; ð9bÞ

dy2

dt
¼ Cx

1þ Bx
y2 �D2y2: ð9cÞ

There is logistic growth of the prey species with intrinsic
growth rate R and carrying capacity K . Predation of species y1 is of
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Lotka-Volterra-type with coefficient M and conversion efficiency E=M.
Predation of species y2 is of Holling-type II with half-saturation con-
stant B, maximum predation rate A=B and conversion efficiency
C=A. Both predators y1 and y2 are subject to natural mortalities D1

and D2, respectively (in chemostat models, the mortality would corre-
spond to the dilution rate). There are some surprising similarities to
our P�i�Z model (4a–4c), if one would relate the total phytoplankton
density to the resource, the prevalence to the first predator and the
zooplankton to the second predator. The consumers in both models
interact only by the consumption of the common limiting resource.
Next, the equation for zooplankton as a Holling-type II grazer is just
the same.

The prevalence could be interpreted as consumer on P with Lotka-
Volterra-type interaction in (9a). However, things are much more deli-
cate (what might explain the strangeness of the periodic attractor),
because there is an additional term ð1� iÞ in (4b), and for r2 ¼ 0 the
phytoplankton population is affected by a reduced intrinsic growth
rate due to i. What happens in system (9a-9c) is that either there is
a line of nontrivial stationary states for a specific parameter combi-
nation (Eq. (7.2) in McGehee and Armstrong (1977)) or that there is
a periodic attractor even in the nonequilibrium case. Both effects are
similar to the results presented here, except the complicated approach
to the periodic attractor.

Koch (1974) numerically observed what appeared to be periodic
oscillations in a model similar to (9a–9c) but with the second predator
being a Holling-type II grazer as well (Hsu et al., 1978). Later work
showed that the stable periodic orbit bifurcates from the subsystems
on the boundaries and reported more and more precise parameter
ranges for this kind of coexistence (Butler and Waltman, 1981; Smith,
1981; Keener, 1983; Farkas, 1984; Muratori and Rinaldi, 1989; Rinaldi
and Muratori, 1992; Liu et al., 2003). What is of interest here is that
some common features have been described: (i) the segment line of
equilibria, (ii) the emergence of relaxation oscillations in the positive
octant and (iii) their collapse into the subsystem of the boundary, cf.
Figure 4b.

Schreiber (2004) constructs another model with a periodic attractor
or a continuum line of equilibria, depending on the parameter values.
The system models ‘‘apparent competition’’ (Holt, 1977) in which two
prey species share a common enemy. In his example, both predation
terms are of Holling-type II and the prey species exhibit logistic
growth. Because there is no nontrivial equilibrium, the system is not
permanent. But because the periodic orbit attracts Lebesgue almost
every (but not every) initial condition, he introduces the term ‘‘almost
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sure permanence,’’ following Jansen and Sigmund (1988), ‘‘almost per-
manence’’. Due to the obvious similarities, we would guess that our
model is almost surely permanent as well, but leave its proof for
a more detailed study.

CONCLUSION

A conceptual biomass-based model of phytoplankton-zooplankton
prey-predator dynamics has been investigated for temporal pattern
formation in a deterministic environment. It has been assumed that
the phytoplankton is partly virally infected. Holling-type II zooplank-
ton grazing has been considered and simulations have been performed
for the case of lytic infection.

The dynamics of the system are surprisingly complex. Especially
interesting is the coexistence of all populations on a strange periodic
attractor that stabilizes itself under nonstationary parameter settings
as well as the interplay of two saddle-foci that are connected by a het-
eroclinic orbit. This form of coexistence is of considerable interest in
theoretical ecology, and we have related our results to similar work
and the concepts of persistence theory and permanence in ecological
communities. The found analogies might help in finding a rigorous
explanation for the strange periodic attractor.

Moreover, the transient dynamics when approaching the attractor
resembles the bursting electrical activities that can be observed in some
cell types (Keener and Sneyd, 1998, chapter 6). The communication by
firing and transmitting action potentials can become quite complex,
involving brief bursts of oscillations interspersed with quiescent peri-
ods. Various bifurcation scenarios have been identified that can explain
the observed dynamics (Izhikevich, 2000). A similar behavior can also
be found in the oscillations of the total phytoplankton population in
Figure 3a. Especially at the beginning, nearly constant phytoplankton
densities alternate with strongly increasing but likewise rapidly
decreasing oscillations. This corresponds to the repeated ‘‘tube-riding’’
and back-twirling on the strange periodic attractor.

Recent work by Abrams et al. (2003) has revealed that in the
McGehee and Armstrong model (1977) more complex dynamics such
as chaos are possible. This raises the question whether similar effects
can be observed in system (4a–4c) with the additional terms as well.

Future studies will also have to consider the transitions from lyso-
geny to lysis and backwards within a system of population, for
example, induced by external noise (Hilker et al., 2006). Thus, one
might get a repeated transient approach to the strange periodic attrac-
tor if the lytic cycle would be in a corresponding parameter range.
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