
www.elsevier.com/locate/mbs

Mathematical Biosciences 206 (2007) 61–80
A diffusive SI model with Allee effect and application to FIV

Frank M. Hilker a,b,*, Michel Langlais c, Sergei V. Petrovskii d, Horst Malchow a

a Institute of Environmental Systems Research, Department of Mathematics and Computer Science,

University of Osnabrück, 49069 Osnabrück, Germany
b Gulbenkian Institute of Science, Theoretical Epidemiology Group, Apartado 14, 2781-901 Oeiras, Portugal
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Abstract

A minimal reaction–diffusion model for the spatiotemporal spread of an infectious disease is considered.
The model is motivated by the Feline Immunodeficiency Virus (FIV) which causes AIDS in cat popula-
tions. Because the infected period is long compared with the lifespan, the model incorporates the host pop-
ulation growth. Two different types are considered: logistic growth and growth with a strong Allee effect. In
the model with logistic growth, the introduced disease propagates in form of a travelling infection wave
with a constant asymptotic rate of spread. In the model with Allee effect the spatiotemporal dynamics
are more complicated and the disease has considerable impact on the host population spread. Most impor-
tantly, there are waves of extinction, which arise when the disease is introduced in the wake of the invading
host population. These waves of extinction destabilize locally stable endemic coexistence states. Moreover,
spatially restricted epidemics are possible as well as travelling infection pulses that correspond either to fatal
epidemics with succeeding host population extinction or to epidemics with recovery of the host population.
Generally, the Allee effect induces minimum viable population sizes and critical spatial lengths of the initial
distribution. The local stability analysis yields bistability and the phenomenon of transient epidemics within
the regime of disease-induced extinction. Sustained oscillations do not exist.
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1. Introduction

There is an ongoing interest in the dynamics of infectious diseases and their spatiotemporal
spread. Simple compartmental models have been used to understand the principal mechanisms
governing disease transmission and have been extended to reaction–diffusion equations to esti-
mate the asymptotic rate of spatial spread [1–6]. For diseases with long incubation and infectivity
times, the host population’s vital dynamics, i.e., birth and death rates, have to be taken into ac-
count. This has been shown to qualitatively change the system behaviour. While in the classic Ker-
mack and McKendrick model [7] the disease dies out or becomes endemic if the basic reproductive
ratio is less or greater than one, respectively, the infection can also become endemic in models
incorporating vital dynamics [8,9]. If the disease additionally reduces the population size, one
has to consider epidemiological models with varying population sizes [10–18]. This may lead in
particular cases to a destabilization of the endemic state and to sustained limit cycle oscillations,
as has been numerically observed for the first time by Anderson et al. [19].

The aim of this paper is to explore the consequences of different vital dynamics on the disease
transmission as well as on the spatial spread. The starting point is an SI model with logistic
growth, the standard incidence (also called proportionate mixing or frequency-dependent trans-
mission) and no vertical transmission, which has been proposed and applied by Courchamp
et al. [20] to the circulation of the Feline Immunodeficiency Virus (FIV) within domestic cats
(Felis catus, L.). FIV is a lentivirus which is structurally similar to the Human Immunodeficiency
Virus (HIV) and induces feline AIDS (Acquired Immunodeficiency Syndrome) in cats.

The vital dynamics are generalized to be governed by a strong Allee effect. This can be caused
by difficulties in finding mating partners at small densities, genetic inbreeding, demographic sto-
chasticity or a reduction in cooperative interactions, see [21–24]. It should be noted, moreover,
that the study of Allee dynamics is justified in its own rights, because this is largely lacking in
the epidemiological literature, but see [25,26].

The spatial propagation of diseases has been investigated in the literature mainly by way of
travelling wave approaches and by approximating the asymptotic rate of spread [27–37]. Two dif-
ferent scenarios will be considered in this study for both the models with logistic growth and Allee
effect: On the one hand the spread of infection in a disease-free population which has settled down
at carrying capacity in all the space and on the other hand the case that the host population itself
still invades into empty space with the disease introduced in the wake of this invasion front. The
latter case is of special interest, since the domestic cat is a very opportunistic predator and con-
sidered to be one of the worst invasive species threatening many indigenous species around the
world. Therefore, FIV has been proposed as biological control method [38,39].

This paper is outlined as follows. In the next section, the basic SI model is described. Then, the
results of a detailed local stability analysis of the model with a generalized strong Allee effect are
presented. The spatiotemporal spread is studied by numerical simulations and travelling wave
approaches in Section 4. Finally, the results are discussed and related to similar work.
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2. Model description

Let P = P(t, x) P 0 be the density of the host population (in number of individuals per km2) at
time t (years) and spatial location x (in km). The fertility function b(P) P 0 and the mortality
function l(P) P 0 are assumed to be density-dependent. Then the intrinsic per-capita growth rate
is
gðPÞ ¼ bðPÞ � lðPÞ.

The total population is split into a susceptible part S = S(t, x) and an infected part I = I(t, x):
P ¼ S þ I.
The disease transmission is assumed to be frequency-dependent; it occurs via proportionate mix-
ing transmission [40–42], i.e., the number of contacts between infected and susceptible individuals
is constant, as it has been argued for rural/suburban cat populations [43]. The transmission coef-
ficient is r > 0 (per year). In contrast to HIV, the disease is assumed not to be transmitted to off-
spring. Hence, newborns of the infected are in the susceptible class. The infected suffer an
additional disease-related mortality a > 0 (per year), which shall be referred to as virulence. There
is no recovery from the disease. Removal of infected is only by death. The corresponding transfer
diagram is
The spatial propagation of the individuals is modelled by diffusion with diffusion coefficients
DS P 0 and DI P 0 (km2 per year) for the susceptibles and infected, respectively. This basic model
is described by a system of two partial differential equations:
oS
ot
¼ �r

SI
P
þ bðP ÞP � lðPÞS þ DSDS; ð1Þ

oI
ot
¼ þr

SI
P
� aI � lðP ÞI þ DIDI; ð2Þ
where D is the Laplacian. The initial and boundary conditions will be specified later.
System (1,2) is an extension of the model by Courchamp et al. [20], which describes the trans-

mission of FIV for the special case of a spatially homogeneous population with DS = DI = 0 and
with logistic growth of the host population, i.e.,
bðPÞ ¼ b > 0; ð3Þ

lðPÞ ¼ mþ r
K

P ; r ¼ b� m; m > 0; ð4Þ
which yields the well-known linearly decreasing per-capita growth rate
gðPÞ ¼ rð1� P=KÞ.
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Gao and Hethcote [15] studied SIRS models with density-dependent birth and death rates. The
above FIV model is a special case, for which they provided global stability results. Zhou and
Hethcote [17] moreover obtained global stability results for a model with generalized logistic
growth. If
bðP Þ is non-increasing, ð5Þ
lðP Þ is non-decreasing and ð6Þ
gðP Þ ¼ 0 has a unique positive solution K; ð7Þ
then the per-capita growth rate g(P) is non-increasing, and K (the carrying capacity) is the unique
stationary state of the disease-free, local model, which is globally asymptotically stable for
P(0) > 0. The SI model with both logistic and generalized logistic growth has four stationary
states and exhibits three different dynamics: eradication of the disease, emergence of a stable en-
demic stationary state or extinction of the host population. Periodic solutions do not exist, which
has been proven with the Dulac criterion.

Next, a generalized strong Allee effect in the vital dynamics is considered, which is based upon
the assumptions
d

dP
gðP Þ

> 0 for 0 < P < P opt;

< 0 for P opt < P ;

�
ð8Þ

gðP Þ ¼ 0 has two positive roots K� and Kþ; 0 < K� < P opt < Kþ. ð9Þ
This yields a per-capita growth rate that is maximal at some intermediate density Popt. The
disease-free, local model has three non-negative stationary states: K� is unstable, K+ is globally
stable in the range P(0) > Popt while 0 is stable in the range 0 < P(0) < Popt. Furthermore, the
following assumptions are posed:
bðP Þ is concave in ð0;KþÞ; ð10Þ
lðP Þ is non-decreasing and convex in ð0;KþÞ; ð11Þ
which imply that g(P) is concave.
As a motivating example of the strong Allee effect, the following per-capita growth rate is

considered:
gðP Þ ¼ aðKþ � P ÞðP � K�Þ;

which is quadratic with Popt = (K+ + K�)/2. The parameter a > 0 scales the maximum per-capita
growth rate. The fertility and mortality functions take the parametric forms
bðP Þ ¼ að�P 2 þ ½Kþ þ K� þ e�P þ cÞ for 0 6 P 6 Kþ þ K�;

non-negative and non-increasing otherwise,

(
ð12Þ

lðP Þ ¼ aðeP þ KþK� þ cÞ. ð13Þ
The case differentiation in (12) is necessary, because the first case becomes negative for
P > K+ + K� + e. We want to emphasize, that the first case is sufficient for the model analysis
provided that the initial conditions are appropriate, e.g. P 6 K+. For biological reasons, however,
we require for P > K+ + K� that the fertility function remains non-negative, non-increasing as
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well as continuous. The mortality function linearly increases with P analogously to the logistic
behaviour. The fertility function differs in being quadratic. It increases with P for small popula-
tion densities, reaches a maximum at some intermediate population density and decreases with P
for large population densities. The parameters e, c P 0 determine the effect of density-dependence
and -independence, respectively. They do not affect, however, the intrinsic per-capita growth rate
g(P).

2.1. Parameter values

The parameter values are chosen as follows. The virulence a = 0.2 year�1 is kept constant as in
Courchamp et al. [20]. In the same study, the transmission coefficient has been estimated to be
approximately r = 3.0 year�1. FIV is mainly transmitted through bites during aggressive contacts
between cats. Hence, r is related to the number of contacts between susceptibles and infected
resulting in bites and eventually in virus transmission. Since there might be a large variation in
the transmission coefficient, we will use r in the following as bifurcation parameter. The param-
eters describing the logistic growth are b = 2.4 year�1, m = 0.6 year�1 and K = 200 individuals per
km2 for rural cat populations, cf. [20]. The resulting fertility and mortality functions are shown in
Fig. 1(a). In the Allee effect model, parameterization is more difficult. First of all, K+ = 200 indi-
viduals per km2 is set to the same carrying capacity. Next, let us assume that there is an Allee
threshold of ten percent, i.e., K� = 20 individuals per km2. The remaining parameters are chosen
to yield (i) a similar natural mortality function as in the logistic model and (ii) a reduction in the
fertility function with decreasing density, cf. Fig. 1(b). The population growth rate exhibiting a
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Fig. 1. Fertility function b(P) (solid lines) and mortality function l(p) (dashed lines) of the models with (a) logistic
growth and (b) a strong Allee effect. (c) Population growth rate g(P) = b(P)�l(P) exhibiting a strong Allee effect.
Parameters: K = K+ = 200, b = 2.4, m = 0.6, K� = 20, a = 10�5, c = 5 · 104, e = 103.
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strong Allee effect is plotted in Fig. 1(c). Lastly, the diffusion coefficient has to be estimated. The
relevant mechanism for population spread is considered to be dispersal [44], since male individuals
move under the pressure of dominant males from their native home range to vacant areas. Home
range sizes vary from approximately 1 ha for urban stray cats to several hundred ha for popula-
tions in non-anthropized habitats, e.g. [43]. Let us assume an observed mean net displacement of
1.77 km for populations of feral domestic cats in rural/suburban areas – having in mind a mean
home range of 10 ha and that a dispersing individual has to pass on average five other home
ranges before finding a vacant one. Then we can estimate a diffusivity of D = 1 km2 per year,
cf. Eq. (3.6) in [1]. Naturally, this is a very rough approximation, but the main aim is to explore
possible patterns of spatiotemporal dynamics. Though we have the epizootiological problem of
FIV spread in mind, we will keep throughout this paper the standard epidemiological notation
such as endemic instead of enzootic, because the investigated model is rather general.
3. Stability results of the non-spatial model with Allee effect

In this section, the existence of the stationary states as well as their stability are summarized for
the spatially homogeneous system with assumptions (8)–(11) for a generalized strong Allee effect.
Details of the calculations can be found in Appendix A. System (1), (2) with DS = DI = 0 exhibits
a singularity in the transmission term. Introducing the prevalence i = I/P 2 [0, 1] and reformula-
tion in (P, i) state variables simplify matters:
dP
dt
¼ ½gðP Þ � ai�P ; ð14Þ

di
dt
¼ ½r� a� bðPÞ � ðr� aÞi�i. ð15Þ
There are six stationary states. They are summarized along with the stability results in Table 1.
For the sake of comparison, the stability results of the generalized logistic model are given in
Table 2 as well. The formulation in (P, i) state variables allows to distinguish between the trivial
extinction state (0, 0) and the disease-induced extinction state (0, i2) with an ultimate prevalence
i2 > 0. The latter one reflects that in the limit process P! 0 there is a non-zero ultimate preva-
lence, and that the host population goes extinct as a consequence of infection with the disease
[45]. The stationary state (K+, 0) corresponds to the eradication of the disease, so that the dis-
ease-free population can settle down at its own carrying capacity. There are two equilibria, which
do not exist in the logistic model. First, (K�, 0), which corresponds to the minimum viable pop-
ulation density in the disease-free Allee model, is always unstable. Second, there is an additional
non-trivial stationary state. Denoting the larger and the smaller total population density with P3+

and P3�, respectively, there are the non-trivial states (P3+, i3+) and (P3�, i3�).
One of the main results is that, again, sustained periodic oscillations are not possible in the gen-

eralized Allee effect model with proportionate mixing transmission. This follows from index the-
ory and the fact that the only unstable interior equilibrium (P3�, i3�), around which a limit cycle
could exist, is always saddle, cf. Appendix A.

It should be noted, that as soon as the initial total population verifies P(0) < K�, it follows from
(8) and (9) that the population goes extinct, i.e., P(t)! 0 as t!1; this dynamics is driven by the



Table 1
Results of the stability analysis of the non-spatial system (14), (15) with generalized Allee effect (8)–(11)

The left column contains the stationary states (P*, i*). The other columns are divided according to the parameter
regions along the ray for r � a which are separated by the values in the top row. (*) The most right column corresponds
to the case that additionally the function /(P) defined in (A.2) does not achieve a positive maximum in (K�, K+). ‘l.a.s.’
stands for locally asymptotically stable, ‘g.a.s.’ for globally asymptotically stable, and ‘–’ means that the stationary state
does not exist or is not feasible.

Table 2
Results of the stability analysis of the non-spatial system (14), (15) with generalized logistic behaviour (5)–(7)

F.M. Hilker et al. / Mathematical Biosciences 206 (2007) 61–80 67
Allee effect alone and independent of the epidemics. Hence, there is always a stable extinction
state with a basin of attraction containing at least 0 6 P < K� in the (P, i) phase plane. The extinc-
tion state has an ultimate prevalence of either zero or i2 > 0. Note that the trivial state (0, 0) in the
logistic model was always unstable.

Increasing the disease-related parameter combination r � a, various dynamical regimes can be
observed. Due to the Allee effect, there are two bistable regimes, in which the asymptotic behav-
iour depends on the initial condition, and one monostable regime. These regimes are summarized
in the bottom row of Table 1. They are: (i) population extinction or eradication of the disease, (ii)
population extinction or endemicity of the disease, and (iii) disease-induced extinction. The last
regime is also observed in the logistic case, cf. Table 2.
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A closer look at Table 1 reveals that when r � a < b(0), there are two locally stable stationary
states (0, 0) and (K+, 0). For b(0) < r � a, the disease-induced extinction state (0, i2) emerges and
exchanges stability with the trivial solution. The unstable (saddle node) endemic state (P3�, i3�)
also exists when b(K�) < r � a < b(K+). For r � a > b(K+), (0, i2) is still a locally stable station-
ary state. (K+,0) and (K�, 0) are unstable. Two endemic states can exist together, the unstable one
and a stable one (P3+, i3+), wherein P3+ is the largest root of the function /(P) defined in (A.2)
within the range (K�, K+). Whenever this root exists, the prevalence is given by i3+ = g(P3+)/a, see
(A.1). When /(P) does not achieve a positive maximum in the range (K�, K+), there are no non-
trivial states, and the disease-induced extinction state is globally stable.
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Fig. 2. Nullclines and stationary states in model (14), (15) with Allee effect (12), (13). The solid and the dashed lines are
the nullclines of P and i, respectively. Black points are stable equilibria and grey points are unstable equilibria. Other
parameter values as in Fig. 1 and a = 0.2. Cases (a)–(d) correspond to the four columns from the right-hand side in
Table 1.
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It is instructive to consider the nullclines in the phase plane. In Fig. 2, this is done for the moti-
vating example (12), (13). The trivial nullclines are on the axes, while the non-trivial nullclines are
quadratics, one open to the bottom and one open to the top. They intersect either in a non-feasible
region (a), in a single non-trivial equilibrium (b), in two non-trivial equilibria (c) or in none non-
trivial equilibrium (d). Though there is no stationary state in the latter case, the temporal dynam-
ics exhibit a slow-down of the trajectories in the region where the nullclines are close to each other.
This results in a ‘transient’ epidemic, which is shown in Fig. 3.

As noted above, when 0 < P(0) < K�, the population dies out by the Allee effect alone. But also
for P(0) > K� numerical simulations show that one may have extinction of the population for a
suitable choice of (P(0), i(0)). This is a consequence of the joint interplay between the population
reduction due to the disease and the Allee effect vital dynamics. While in the model with logistic
growth extinction is only possible if r � a is large, the Allee effect generally makes possible the
population extinction. Hence, the Allee effect is especially important in the parameter ranges,
where the logistic model allows endemicity. In turn, when the dynamics is mainly driven by the
losses due to the disease, i.e., (0, i2) is globally stable, the asymptotic behaviour of the logistic
and the Allee model is similar.
4. Spatial spread

Additionally accounting for diffusion as spatial propagation mechanism, this section takes into
account the full system (1), (2). Infected individuals are assumed not to be affected by the disease
in their mobility, thus D = DS = DI. Moreover, considerations are restricted to the one-dimen-
sional space, i.e., the Laplacian is set to D = o2/ox2. Throughout this section, no-flux boundary
conditions are assumed. The initial conditions generally distinguish between a left, middle and
right region (which shall later reflect the wake of the host population invasion front in which
the disease is introduced, the disease-free invasion front and empty space, respectively):
ðSð0; xÞ; Ið0; xÞÞ ¼
ðSl; IlÞ if x < xl;

ðSl; 0Þ if xl 6 x < xr; 0 < xl 6 xr.

ðSr; 0Þ if x P xr;

8><
>: ð16Þ
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Throughout this paper, Sl will be set to the carrying capacity, i.e. Sl = K for the model with lo-
gistic growth and Sl = K+ for the model with Allee effect, and Il = 1. When the host population
invades empty space, Sr = 0, and if the diseases is introduced into a completely established pop-
ulation, Sr = Sl.

For the numerical simulations, the Runge–Kutta scheme of fourth order is applied for the reac-
tion part and an explicit Euler scheme for the diffusion part of the PDE. In order to handle the
singularity at the extinction state, a small threshold d = 10�10 is applied. If S(t) + I(t) < d, then the
transmission terms in (1) and (2) are neglected. In order to suppress effects resulting from a micro-
scopically small band of individuals propagating ahead the actual fronts (‘atto-fox problem’ [33]),
an additional threshold � = 10�5 is applied, below which the population densities of both suscep-
tibles and individuals are simply reset to zero. The value of this threshold has been chosen to
weaken atto-effects, but not to change the qualitative behaviour of the waves.

First it should be noted that in the disease-free model (I = 0) travelling frontal waves with con-
stant speed and shape emerge [46–49]. There is a minimum wave speed in the model with logistic
growth and a unique wave speed in the model with Allee effect, which respectively are
v ¼ 2
ffiffiffiffiffiffi
rD
p

; ð17Þ
v ¼

ffiffiffiffiffiffiffiffiffi
2aD
p

ðKþ=2� K�Þ. ð18Þ
There are two particularities in the Allee effect model.

(1) When the Allee threshold K� > K+/2, then the population wave moves backward.
(2) Such one-component bistable reaction–diffusion systems are known to show nucleation-type

behaviour, i.e., nucleii of a stable ‘phase’ P = K+ in an unstable phase P = 0 will decay unless
they have reached a certain critical size, cf. [50–52]. Otherwise, they advance with the asymp-
totic rate of spread given in (18).

4.1. Spread in a settled disease-free population

The situation is considered that the disease-free population has established in all the space at
carrying capacity, i.e. Sr = K or Sr = K+, respectively, and that infected individuals are at the
left-hand boundary as specified in (16).

The numerical simulation of the model with logistic growth is shown in Fig. 4. A travelling
infection wave emerges and advances with a constant speed v. In its wake, the population settles
down to the endemic state. The infection front propagates with a speed of v = 1.2 km/year. This
matches well the wave speed which can also be easily derived by linearization of the equations
‘at the leading edge’, i.e., far in front of the travelling front where S � K and I � 0. Then the
equation for I in (1), (2) reduces to be of Skellam/Luther type [53,54], and the minimum wave
speed is
v ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� a� bÞD

p
. ð19Þ
In the model with Allee effect, the emergence and propagation of a travelling wave can be ob-
served, too. With the same approach as above, one obtains the wave speed
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v ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� a� a½cþ ðeþ K�ÞKþ�ÞD

p
. ð20Þ
This is an approximation and has to be taken with caution, because the travelling front in the Al-
lee effect model is a ‘pushed’ wave. Because the infection spreads within a population which has
established at carrying capacity, we argue that (20) may be a reasonable approximation provided
that the coexistence state is large enough and, thus, the total population is throughout the trav-
elling wave quite far away from small densities which might cause significant impacts due to the
Allee effect. In order to check the robustness of (20) against P3+, numerical simulations were run
with varying transmission coefficient r. The results in Fig. 5 show a very good accordance. How-
ever, we want to emphasize that in other parameter ranges where P3+ is closer to the Allee thres-
hold regions the match possibly might not be as good.

Both wave speed approximations include the disease-related parameters and the diffusivity. In
the model with logistic growth, only the birth rate is additionally included. This reflects that the
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wave is ‘pulled’, whereas the Allee effect-wave is ‘pushed’, and therefore also the other vital
parameters play a role, e.g., the Allee threshold and the carrying capacity.

Next, if the transmission coefficient is further increased than in Fig. 5, the non-trivial states dis-
appear and the disease-induced extinction state (0, i2) is globally stable, cf. Table 1. Numerical
simulations show the propagation of travelling pulse-like epidemics that wipe out the host popu-
lation as displayed in Fig. 6. This effect is a result of the ‘transient’ epidemic, cf. Fig. 3. The length
of the pulse depends on how closely the non-trivial nullclines approach each other (Fig. 2(d)). The
travelling epidemic with succeeding population extinction is associated with the stability of the
disease-induced extinction state. Hence, this fatal epidemic wave can also be obtained in the
model with logistic growth if the parameters are appropriately chosen, cf. Table 2.

4.2. Spread in colonizing population

Now, the host population is assumed still to be in a colonizing process, i.e. Sr = 0. The disease is
subsequently introduced in the wake of the host population front, cf. (16).

In the logistic SI model with the FIV parameters, the speed (17) of the invading host population
is larger than the speed (19) of the disease. Thus, the distance between the two fronts increases
with time. However, the infection wave can catch up the disease-free front, if r � a > 2b�m. This
is illustrated in Fig. 7. For a better visualization, the waves are now displayed in the (x, t) plane
with a grey colour shading according to the densities of susceptibles and infected. The infection
and the host population invasion front combine to a travelling front of the endemic state into
empty space. The numerical results show that this front moves with the same speed (17) as the
invading host population. This means that the infection spread rate is reduced to this speed, be-
cause of which there is a kink in the expansion of I in Fig. 7.

In the model with Allee effect, three different types of spatiotemporal dynamics can be observed
when a catch-up has taken place. First, the endemic front does not move with the same speed (18)
as the disease-free invasion front before. Instead, the endemic front either slows down or becomes
recessive. The latter case of front reversal is shown in Fig. 8. Shortly before the catchup, the
remaining ‘atto-individuals’ cause a hump of infection ahead of the actual infection front. Then,
there is a retreat of the total population, which corresponds to a wave of extinction, though the



Fig. 7. Travelling infection wave introduced in the wake of an invading host population with logistic growth. When the
disease catches up the invading host population front, the disease spread is slowed down, but the host population (now
endemic) still advances with the same speed. Parameters as in Fig. 4, but with Sr = 0, xl = 5, xr = 100 and r = 7, in
order to enable the catch-up.

Fig. 8. Front reversal in the model with Allee effect, when the infected front catches up the host population front.
Parameters as in Fig. 2(c) with Sr = 0, xl = 5, xr = 100.

F.M. Hilker et al. / Mathematical Biosciences 206 (2007) 61–80 73
coexistence state is locally stable. Note the increased density of infected at the head of the retreat-
ing front. A detailed study of this phenomenon is given in [25].

Second, when there is a unique, unstable non-trivial equilibrium as in Fig. 2(b), a travelling
infection pulse emerges, which propagates jointly with the front of the host population. This cor-
responds to a travelling epidemic and is illustrated in Fig. 9. Though the infection pulse continues
its advancement as long as there are no boundary restrictions, the disease fades out at a fixed loca-
tion in space when the pulse has passed. Then, the population approaches the carrying capacity
again – in contrast to the fatal epidemic with succeeding population extinction shown in Fig. 6. It
should be noted, that the emergence of this travelling pulse requires appropriate values of r, initial
conditions as well as xl and xr being close enough to each other.

Third, consider the parameter region where the disease-induced extinction state is globally sta-
ble and a transient epidemic develops as in Fig. 3. Then the disease-free population spreads in an
invasion front, and the introduced disease causes a travelling epidemic before the ultimate extinc-
tion due to the transient dynamics, cf. Fig. 10. Thus far this effect is the same as the fatal epidemic
(Fig. 6). The finite initial distribution of the host population, however, induces the disappearance



Fig. 9. Infection pulse in the model with Allee effect. Parameters as in Fig. 8, except r = 2.5 and xl = 10, xr = 15.

Fig. 10. Spatially restricted epidemic in the model with Allee effect. In the non-spatial model, there is no non-trivial
state and the disease-induced extinction state is globally stable. Parameters as in Fig. 8, except r = 3.4, what yields the
local dynamics as in Fig. 3. xl = 5, xr = 150.
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of the epidemic wave. When the infection catches up the invading host population, there is again a
front reversal of the endemic state, and thus a travelling wave of extinction limits the propagation
of the epidemics. This results in the spatial extinction of the total population, and the epidemic
could only spread within a spatially restricted area. Note that this effect is also possible in the
model with logistic growth since it is associated with the disease-induced extinction state as well
as appropriate initial conditions.
5. Discussion and conclusions

This paper has investigated the impact of a strong Allee effect in the vital dynamics of an
epidemiological SI model upon the temporal and spatiotemporal disease spread as well as on
the host population. First of all, the Allee effect induces a threshold value in the initial con-
ditions below which the population dies out (minimum viable population size) and a critical
value of the spatial length of an initial nucleus (also called the problem of critical aggregation,
cf. [55]). Numerical simulations show that both phenomena are strengthened in the presence of
the disease.
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Furthermore, the Allee effect leads to bistability in the local transmission dynamics. Jointly with
the minimum viable population size, this has severe implications for possible control methods,
since they do not necessarily rely on reducing the basic reproductive ratio anymore. Instead, dis-
ease control could be established by shifting the system’s trajectory in the desired domain of
attraction, which may be easier to manage than modifying parameter regimes.

If the infectiousness of the disease, i.e., a high transmissibility and/or a small enough virulence,
is large in comparison with the demographic reproductiveness, the Allee effect becomes less
important, because the population dynamics is dominantly driven by the disease to extinction.
This disease-induced extinction state is typical for epidemiological models with proportionate
mixing transmission and has also been found in models with vital dynamics of logistic, exponen-
tial or recruitment type. Similarly, sustained oscillations could not be found in the model with Al-
lee effect, either. There are, however, three other additional features: (i) The trivial state can be
locally stable. (ii) There is a second non-trivial state, which is always unstable. (iii) In the param-
eter range of disease-induced extinction, there is still an epidemic possible, if the non-trivial null-
clines are close to each other. The importance of transient dynamics has recently been highlighted
in [56].

The emergence and propagation of travelling frontal waves of infection have been numerically
observed in a spatial setting. Analytical wave speed approximations have been derived for the
cases when the disease propagates in an established host population. When the host population
itself still colonizes empty space, various spatiotemporal dynamics can be observed. In the model
with logistic growth the infection front is slowed down to the constant invasion speed of the host
population, which is not affected by this catch-up. In contrast, in the model with Allee effect, the
propagation of the host population front is either slowed down or reversed. Thus, the extinction
of the invasive host population is possible when the disease is subsequently introduced. This is a
mechanism which can be attributed to the joint interplay of the Allee effect, the disease and the
spatial diffusion. Thus, the virus might be a potential biocontrol agent, cf. [57]. A similar dynamics
has been observed in predator-prey models in which the prey exhibits an Allee effect [58,59]. An
analytical investigation of this effect is challenging because of the set of two PDEs with cubic non-
linearity, but possible approaches are presented in [25]. Pathogen-driven host extinction in a spa-
tial context has also been observed in a model of lattice structured populations [60,61].

Moreover, travelling infection pulses in front of the colonizing host population can be observed
if the unique endemic state is unstable in the local dynamics. This is an additional feature of the
model with Allee effect. Both models with Allee effect and logistic growth can exhibit travelling
fatal epidemics with host extinction in the parameter regime with the ‘transient’ epidemic. This
is associated with the globally stable disease-induced extinction state. If the initial distribution
of the host population is finite, a spatially restricted infection front appears before ultimate pop-
ulation extinction.

Overall, the Allee effect induces a rich variety of (spatio-)temporal dynamics in the considered
epidemiological model. Since it can have significant consequences on the fate of epidemics,
endemics and invasions, its role has to be further investigated. Of particular interest would be
the robustness of the current results against other epidemiological details such as transmission
functions, vertical transmission or disease-related reduced fertility. The extension of an exposed
compartment, for instance, enables sustained oscillations if disease transmission is of mass action
type [19]. Recent results indicate that the Allee effect makes possible limit cycle oscillations in an
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SI model with mass action transmission (Hilker et al., in prep.), even if there is no exposed
compartment.
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Appendix A. Stability analysis of the non-spatial model

We consider the ODE system (14), (15) with the assumptions (8)–(11) for a generalized strong
Allee effect. For the sake of simplicity, let the prime denote differentiation with respect to P. We
will apply this notation to g(P), b(P) and /(P).

One may check that the domain P P 0 and 0 6 i 6 1 is invariant; moreover, no trajectory start-
ing at P(t = 0) > 0 and i(t = 0) > 0 may hit the boundary P = 0 or the boundary i = 0 in finite
time. There are four (semi-)trivial stationary states:

• P0 = 0 and i0 = 0,
• P1+ = K+ and i1+ = 0,
• P1� = K� and i1� = 0,
• P2 = 0 and i2 = [r � a � b(0)]/(r � a); it is feasible, i.e., 0 < i2 6 1, if and only if r � a > b(0).

Looking for a non-trivial stationary state with 0 < P3 6 K+ and 0 < i3 6 1 one finds
i3 ¼
gðP 3Þ

a
¼ r� a� bðP 3Þ

r� a
. ðA:1Þ
Thus, a necessary condition to have a non-trivial stationary state is r � a > 0. Introducing the
function /(P) defined as
/ðPÞ ¼ ðr� aÞgðP Þ þ abðPÞ � aðr� aÞ;
one is left with finding P3 as a root of
/ðP 3Þ ¼ 0 in ðK�;KþÞ; ðA:2Þ
because, by (8), (9), g(P) is non-positive in (0, K�). Still assuming r � a > 0, from conditions (10)
and (11), /(P) is concave in this range; hence there are either 0, 1 or 2 feasible roots. Let us
denote P3� the root located on the increasing branch of / and P3+ the root located on the
decreasing branch of /, when such roots exist. In order to be a little bit more precise, let us re-
call that g(0) < 0 and g(K�) = g(K+) = 0; thus, using the monotonicity of the death-rate l(P), it
follows



Fig. 1
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0 6 bð0Þ < bðK�Þ 6 bðKþÞ and /ðK�Þ 6 /ðKþÞ.

Hence, still assuming r � a > 0, one has

(1) no non-trivial stationary solution when /(K�) P 0, say 0 < r � a 6 b(K�);
(2) a unique non-trivial stationary solution (P3�, i3�), when /(K�) < 0 6 /(K+), say

b(K�) < r � a 6 b(K+);
(3) two non-trivial stationary solutions, labelled (P3�, i3�) and (P3+, i3+), or
(4) none when /(K�) 6 /(K+) < 0, say b(K�) 6 b(K+) < r � a; this depends on whether /

achieves a positive maximum in (K�, K+) or not.

This is illustrated in Fig. 11. It should be noted that g 0(P3+) < 0: assuming the opposite yields
b 0(P3+) > 0 and therefore / 0(P3+) > 0, a contradiction.

The local stability analysis of the (semi-)trivial stationary states follows from the computation
of the Jacobian matrix that is either a diagonal or a triangular matrix. The results are summarized
in Table 1. Finally, at any non-trivial stationary state
JðP 3; i3Þ ¼
g0ðP 3ÞP 3 �aP 3

�b0ðP 3Þi3 �ðr� aÞi3

� �
.

One has / 0(P3+) < 0, so that the determinant of J(P3+, i3+) is positive; its trace is negative because
as noted above g 0(P3+) < 0 and r � a > 0 as soon as P3+ is feasible, yielding the local stability of
(P3+, i3+) as soon as it is feasible. Conversely, detJ(i3, P3) = �i3P3/ 0(P3) so that (P3�, i3�) is
unstable when it is feasible because / 0(P3�) > 0. To be more precise, (P3�, i3�) is always a
saddle. Using this fact, we obtain from index theory that there cannot be any limit cycles.
The index theory can give insight into the qualitative behaviour of closed orbits and multiple
equilibria of planar dynamical systems [9,62]. In particular, the index of any simple closed curve
is equal to the sum of the indices of all equilibria in the interior of the curve. The index of a
periodic orbit is +1. Within the positive interior, there exist either only (P3�, i3�) that is always
a saddle with index �1 or also (P3+, i3+) that is always stable with index +1. Hence, there cannot
be any periodic orbit – neither around (P3�, i3�) nor around both (P3�, i3�) and (P3+, i3+). Note
that a homoclinic orbit should not be treated as a periodic orbit for the application of index
theory [62], because of which we restrict or conclusion to the non-existence of limit cycle
oscillations.
1. The number of non-trivial stationary states in model (14), (15) with Allee effect (12), (13) depends on the
n of /(P). Four different cases are possible. Their numbering refers to the description in the text.
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