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a b s t r a c t 

Many host–pathogen systems are characterized by a temporal order of disease transmission and host re- 

production. For example, this can be due to pathogens infecting certain life cycle stages of insect hosts; 

transmission occurring during the aggregation of migratory birds; or plant diseases spreading between 

planting seasons. We develop a simple discrete-time epidemic model with density-dependent transmis- 

sion and disease affecting host fecundity and survival. The model shows sustained multi-annual cycles 

in host population abundance and disease prevalence, both in the presence and absence of density de- 

pendence in host reproduction, for large horizontal transmissibility, imperfect vertical transmission, high 

virulence, and high reproductive capability. The multi-annual cycles emerge as invariant curves in a 

Neimark–Sacker bifurcation. They are caused by a carry-over effect, because the reproductive fitness of 

an individual can be reduced by virulent effects due to infection in an earlier season. As the infection 

process is density-dependent but shows an effect only in a later season, this produces delayed density 

dependence typical for second-order oscillations. The temporal separation between the infection and re- 

production season is crucial in driving the cycles; if these processes occur simultaneously as in differen- 

tial equation models, there are no sustained oscillations. Our model highlights the destabilizing effects of 

inter-seasonal feedbacks and is one of the simplest epidemic models that can generate population cycles. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

How infectious diseases spread in populations is determined

y complex interactions between pathogens, hosts, and their en-

ironment. Many host-pathogen systems are characterized by a

emporal order of events in which the transmission period of the

athogen is separated from the reproduction period of the host.

uch a sequence of infection and breeding periods is a notori-

us feature of a number of plant and animal populations, espe-

ially in the presence of discrete life cycle stages, spatial migration,

reeding behavior, or seasonal changes in social mixing, flocking or

rowding, and anthropogenic impacts. 

For example, many defoliating insects have certain stage classes,

here only larvae or pupae can become parasitized ( Volkman,

997; Cory and Myers, 2003; Miller, 2013 ). Agricultural crops have

learly defined planting periods, after which diseases may be

ransmitted by insect vectors ( Mailleret and Lemesle, 2009 ). In mi-

ratory species, breeding in summer is often followed by an au-
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umnal aggregation period before starting the long-distance move-

ents ( Dingle, 1996 ). During the aggregation period, there is no-

able variation in parasite pressure for insects, birds, and mammals

 Folstad et al., 1991; Loehle, 1995; Altizer et al., 2011 ). Avian in-

uenza incidence has been suggested to peak in migratory water-

owl in late summer and early fall, whereas there is little infec-

ion in winter ( Hinshaw et al., 1980; Krauss et al., 2004; Munster

t al., 2007; Hoye et al., 2011 ). Another kind of aggregation can

ccur at bird feeders in fall and winter, where the flocking behav-

or has been suggested to increase the transmission and prevalence

f Mycoplasma gallisepticum in house finches ( Altizer et al., 2004;

osseini et al., 2004 ). 

Breeding behavior can also play a crucial role in driving

athogen transmission. European red foxes ( Vulpes vulpes ) show

ncreased mobility during the mating season, which leads to in-

reased transmission of rabies, while parents become more seden-

ary when raising their offspring and are thus less likely to trans-

it the disease ( Pastoret and Brochier, 1999; Bolzoni et al., 2008 ).

ggressive interactions (between males) or courtship-related con-

acts during the breeding season could be further mechanisms

https://doi.org/10.1016/j.jtbi.2020.110158
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driving seasonal transmission of pathogens ( Keeling and Ro-

hani, 2007 ). 

Hence, there is ample evidence that disease transmission oc-

curs predominantly or is amplified in certain seasons of the year.

Mathematical models are useful tools for investigating the dynamic

interplay between the processes in the different seasons. Previous

models have used alternative frameworks to investigate separate

seasons of infection and reproduction, including difference equa-

tions ( Régnière, 1984; Hamelin et al., 2017 ), semi-discrete or hybrid

systems ( van den Berg et al., 2011; Hamelin et al., 2011; 2016a;

2016b; Mailleret et al., 2012; Hilker et al., 2017; Desprez-Loustau

et al., 2019 ), and delay differential equations ( Briggs and Godfray,

1995a; 1995b; 1996 ). 

Here we use difference equations because they are easier to an-

alyze and particularly appropriate when there are non-overlapping

seasons with distinct transmission and reproduction processes. Our

model is similar to the one in Hamelin et al. (2017) , with the

only difference that we assume density-dependent rather than

frequency-dependent transmission. The former is often more ap-

propriate for directly or environmentally transmitted pathogens,

while the latter is often more appropriate for sexually or vector

transmitted pathogens (cf. Begon et al., 2002 ). Our model is also

similar to the one in Régnière (1984) , but differs from it by adding

density-dependent host population regulation and ignoring nonlin-

ear transmission functions as well as different disease states. 

In this paper, we show that separate seasons of disease trans-

mission and host reproduction can drive multi-year cycles of both

the host population and the disease prevalence, provided that dis-

ease transmission is density-dependent and the disease sufficiently

virulent. We offer an explanation of the mechanisms causing these

cycles. The important point is that the infection status of an in-

dividual, obtained in one season of the year, affects the fitness of

the same individual during breeding in another season of the year.

This results in a carry-over effect ( Norris, 2005 ), which is desta-

bilizing in this case. Hence, the cycle mechanism is clearly differ-

ent from other causes like seasonal variation or external forcing,

which have been reviewed by Altizer et al. (2006) . Also, discrete-

time models can be constructed in different ways. One commonly

taken approach is to numerically discretize differential equation

models. However, that can lead to oscillations and chaos even in

the absence of disease, e.g. when logistic host population growth

is approximated by the discrete quadratic map. Here, we use in-

stead an “exponential approach” based on the Poisson distribution

that can be traced back to Reed and Frost. This implies that the

multi-annual oscillations are not due to numerical discretization,

but an emergent system property. 

In the next section, we derive the mathematical model. Numer-

ical simulations of its dynamical behavior including discrete-time

limit cycles will be shown in the following section, while the equi-

librium and stability analysis is available in the Appendix. In the

Discussion, we compare our model dynamics with empirical ex-

amples that show some qualitative agreement. We also discuss the

mechanism driving the oscillations and point out the differences

with other epidemiological models that generate population cycles.

2. Model 

We formulate a discrete-time model of a host population,

where the time step corresponds to one generation (life cycle

length). Without loss of generality, we assume that the completion

of the life cycle takes one year, and we will use the terms gener-

ation, time step, and year interchangeably in this paper. Each gen-

eration is composed of two temporally distinct periods (seasons):

(i) horizontal transmission, denoted by Infection; (ii) reproduction,

competition, survival, and vertical transmission, denoted by Repro-

duction. 
In the main text, we assume that Reproduction occurs after In-

ection: 

 → ︸︷︷︸ 
Infection 

t ′ → ︸︷︷︸ 
Reproduction 

t + 1 . 

uring the time interval [ t, t ′ ], horizontal disease transmission be-

ween infected and susceptible hosts occurs. During this first time

nterval, an epidemic may occur. During the second time interval

 t ′ , t + 1] , hosts reproduce and die. Vertical disease transmission

etween an infected host and its progeny can also occur during

his second time interval. After the second period, the annual cy-

le repeats. 

Appendix A shows that the order of events (whether Reproduc-

ion occurs before Infection or the other way around) does not im-

act the main result to be presented (multi-year cycles may occur

n a simple discrete-time epidemic model). 

Two variables account for the host population dynamics dur-

ng each of the periods. The two variables are S and I , the den-

ity of susceptible and infected hosts, respectively. The total den-

ity of susceptible and infected hosts is denoted as N = S + I. The

ost dynamics are observed each year before Infection at time t ,

 = 0 , 1 , 2 , . . . . 

During the Infection period, the Poisson distribution is used

o model horizontal disease transmission between the infected

nd susceptible hosts. We assume that transmission is density-

ependent. Let � denote the parameter in the Poisson distribution.

hen � = βI is the average number of contacts with infected hosts

ver an Infection season that result in horizontal disease transmis-

ion to one susceptible host. Hence, the probability of no success-

ul disease transmission to the susceptible host is exp (−�) and the

robability of successful transmission is 1 − exp (−�) . Therefore, at

ime t ′ , the model takes the form: 

(t ′ ) = S(t) exp ( −βI(t) ) , 

I(t ′ ) = I(t) + S(t) [ 1 − exp ( −βI(t) ) ] . (1)

e would like to remark that system (1) is formally related to the

eed–Frost model (see Appendix B ). 

For the Reproduction period, we use a well-known form of

ompensatory population growth that corresponds to the logistic

rowth model and goes back to Beverton and Holt (1957) for an-

mal populations and to de Witt (1960) for plants. At time t + 1 ,

he model is: 

(t + 1) = ρS S(t ′ ) + 

b S S(t ′ ) + (1 − p) b I I(t ′ ) 
1 + λN(t ′ ) , 

I(t + 1) = ρI I(t ′ ) + 

pb I I(t ′ ) 
1 + λN(t ′ ) , (2)

here ρS and ρ I are the survival fractions of susceptible and in-

ected hosts after giving birth, respectively. The fecundity parame-

ers b S and b I denote the average number of viable offspring pro-

uced per susceptible or infected host, respectively, in the absence

f density-dependent effects. Parameter λ > 0 describes density-

ependent competition between hosts. We assume that density

ependence applies equally to susceptible and infected hosts. Our

odel includes two types of disease transmission. Besides horizon-

al transmission in the Infection period, there is vertical transmis-

ion during the Reproduction period. Parameter p ∈ [0, 1] accounts

or vertical transmission. If there is perfect vertical transmission

 p = 1 ), all the offspring produced by an infected host are infected.

n the case of imperfect vertical transmission (0 ≤ p < 1), only a

roportion p of the offspring of infected hosts is infected, and the

emaining proportion 1 − p is not infected. 

In the remainder of the paper, we assume that a susceptible

ost produces on average more than one viable offspring so that

usceptible hosts survive in the absence of infection. Moreover, we
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Table 1 

Model parameters and variables. 

Variable Definition Parameter Definition 

t time in years b S susceptible host fecundity 

N ( t ) total host density b I infected host fecundity 

S ( t ) susceptible density p vertical transmission fraction 

I ( t ) infected density β horizontal transmission rate 
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Fig. 1. Time series of total host population abundance N = S + I (blue, solid) and 

disease prevalence I / N (red, dashed). Obtained from model (4) with b S = 2 , b I = 

0 . 5 , β = 10 , p = 0 . 5 , λ = 0 . (For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of this article.) 

Fig. 2. Invariant curve (discrete-time limit cycle) in the state space of total host 

population abundance and disease prevalence. Shown are 50 iterations obtained 

from model (4) with b S = 2 , b I = 0 . 5 , β = 10 , p = 0 . 5 , λ = 0 . 

 

t  

w  

l

T  

s  

i  

t

N

w

 

e  

t  

o  

i  

t  

l  

t  

o  

t  

W  

s  

c  

o  

t  

t

ssume that infected hosts have lower reproductive output than

usceptible hosts. This could be due to disease-reduced fertility or

isease-reduced survival of the infected offspring. These assump-

ions imply: 

 < b I < b S , and b S > 1 . 

For simplicity, we henceforth also assume that adult individuals

ie after giving birth, i.e., ρS = ρI = 0 , which amounts to focusing

n semelparous species (including annual plants). The model sim-

lifies to: 

(t + 1) = 

b S S(t ′ ) + (1 − p) b I I(t ′ ) 
1 + λN(t ′ ) , 

I(t + 1) = 

pb I I(t ′ ) 
1 + λN(t ′ ) . (3) 

The full model consists of the preceding models for the two pe-

iods of Infection and Reproduction. That is, combining Eqs. (1) and

3) , the full model can be expressed as the following system of

wo first-order difference equations for susceptible and infected

osts: 

(t + 1) = 

(1 − p) b I [ I(t) + S(t) ] + [ b S − (1 − p) b I ] S(t)e −βI(t) 

1 + λ[ I(t) + S(t) ] 
, 

I(t + 1) = pb I 
I(t) + S(t) 

[
1 − e −βI(t) 

]
1 + λ[ I(t) + S(t) ] 

, (4) 

ith b S > 1, b I < b S and 0 < p ≤ 1. Table 1 lists the parameters,

ariables and their definitions for the full model. 

Model (4) corresponds to the one in Hamelin et al. (2017) , ex-

ept that it is based on density-dependent rather than frequency-

ependent transmission. Moreover, model (4) is related to the one

n Régnière (1984) , but extends it by density-dependent host de-

ographics and simplifies it by ignoring nonlinear transmission

ates due to propagule aggregations and different disease states

see Appendix C for details). 

. Results 

Simulations show the existence of sustained oscillations in

he host–pathogen model (4) , both in the absence and presence

f density-dependent reproduction. For λ = 0 , the time series in

ig. 1 shows an example of a large-amplitude multi-year cycle of

he total host population density and the disease prevalence, i.e.,

he proportion of the host population being infected. The two vari-

bles oscillate with the same period. Their oscillations are phase-

hifted, with the disease prevalence lagging behind the total host

ensity. 

.1. Density-independent reproduction ( λ = 0 ) 

Here, we study more closely the properties of the cycles and

he mechanisms causing them, assuming λ = 0 . In the phase plane,

he cycle orbit asymptotically forms a closed invariant curve (see

ig. 2 ). It can be considered a discrete-time limit cycle. The or-

it jumps around the closed invariant curve, but never repeats

 sequence exactly. Thus it eventually fills out the entire invari-

nt curve. The dynamics on the closed invariant curve are quasi-

eriodic. In contrast to continuous-time limit cycles, the orbit does

ot move smoothly around the closed invariant curve. 
Fig. 3 shows a phase plot of total host density N t+1 against

he lagged density N t . It reveals a circular clockwise orbit,

hich indicates that the host population is regulated by de-

ayed density-dependent mechanisms (second-order feedbacks; see 

urchin, 2003 ). In addition, the orbit in Fig. 3 is color-coded to

how the disease prevalence. The phase plot may be more easily

nterpreted when realizing that the orbit follows the total popula-

ion density, which can be written as 

(t + 1) = b I N(t) + (b S − b I )e −βN(t) z(t) N(t)(1 − z(t)) , 

here z(t) = I(t ) /N(t ) ∈ [0 , 1] is the disease prevalence. 

Fig. 3 suggests that the multi-year cycle is driven by alternating

pisodes of host population growth and host population decline. If

he disease prevalence is small, the host population consists mostly

f susceptible individuals and grows with an overall factor that

s close to b S (where the upper part of the circular orbit is close

o the upper dotted line). By contrast, if the disease prevalence is

arge, the host population consists of so many infected individuals

hat the overall growth factor is close to b I (where the lower part

f the circular orbit is close to the lower dotted line). The popula-

ion density then declines because b I < 1 due to virulent effects.

hen the population density becomes smaller, disease transmis-

ion gets reduced as well because it is density-dependent. As a

onsequence, the disease prevalence decreases and the proportion

f susceptibles in the population increases. The overall growth fac-

or therefore again approaches b S , which allows the host popula-

ion to enter another growth episode of the cycle. 
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Fig. 3. Phases of host population growth and decline. Color coding according to dis- 

ease prevalence. The last 1,0 0 0 of 5,0 0 0 iterations of model (4) are plotted. Param- 

eters: b S = 2 , b I = 0 . 5 , β = 10 , p = 0 . 5 , λ = 0 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Note that, in the examples shown thus far with λ = 0 , the dis-

ease regulates a host population that would grow without bounds

in the absence of disease to sustained oscillations (cf. Appendix D ).

The oscillations also occur in the presence of bounded host popu-

lation growth ( λ > 0). In this case, the dotted lines in Fig. 3 corre-

spond to saturating Beverton–Holt curves (not shown here). 

3.2. Density-dependent reproduction ( λ > 0) 

Simulations of model (4) with λ > 0 show that the host–

pathogen system converges in the long-term toward either a stable

equilibrium or sustained oscillations. We do not observe bistabil-

ity. The stable equilibrium can be (i) the disease-free equilibrium

(S ∗ = (b S − 1) /λ, I ∗ = 0) , where the infected population goes ex-

tinct; (ii) a coexistence equilibrium ( S ∗ > 0, I ∗ > 0), where both

uninfected and infected hosts remain in the long run; or (iii) the

total-infection equilibrium (S ∗ = 0 , I ∗ = (b I − 1) /λ) , if there is per-

fect vertical transmission ( p = 1 ). Details of the equilibria and their

stability are given in Appendix D . 

Fig. 4 shows bifurcation diagrams for varying horizontal trans-

mission parameter β . For low values of β , the disease cannot es-

tablish in the host population and the disease-free equilibrium is

the attractor (see Appendix D for the analytical condition). For in-

termediate values of β , the disease can invade and persist so that

the coexistence equilibrium is the attractor. At a critical value βNS ,

we observe a Neimark–Sacker bifurcation where the coexistence

equilibrium loses stability, giving rise to oscillations for β > βNS .

The oscillations can be quasi-periodic like on the closed invari-

ant curve shown in Fig. 2 , or they can be periodic cycles. The lat-

ter occur in the periodic windows of the bifurcations diagrams in

Fig. 4 B–D; they are still multi-year oscillations. Periodic cycles are

promoted by increased fecundity of susceptible individuals (higher

b S ) and by increased virulence (lower b I ). The parameter range of

oscillations, quasi-periodic or periodic, increases with both b S and

b I in Fig. 4 . We did not observe chaotic dynamics in our simula-

tions but we did not search for it either. 

Fig. 5 is a two-parameter bifurcation diagram. The graph il-

lustrates how the infected host fecundity b I effectively influences

the critical horizontal transmission parameter βNS at which the

Neimark–Sacker bifurcation occurs. Our simulations suggest that

when b I is close to 0 or 1, the coexistence equilibrium retains its

stability for a larger range of horizontal transmission parameter

values than for intermediate values of infected host fecundity. 
Now, we investigate the impact of the two remaining parame-

ers λ and p on the population and disease dynamics. First, density

ependence ( λ > 0) facilitates the existence of a stable disease-free

quilibrium ( Fig. 6 ). That is, while the disease is endemic for λ = 0

at stable equilibrium or in form of cycles), the disease dies out in

ost populations with density-dependent demographics if horizon-

al transmission and infected host fecundity are small. Moreover,

ncreased density dependence (larger values of λ) is stabilizing in

he sense of reducing the parameter range leading to endemic cy-

les (compare the second and third columns in Fig. 6 ). Second,

ncreased vertical transmission (larger values of p ) is destabiliz-

ng because it tends to replace stable endemic equilibria by en-

emic cycles (compare the rows in Fig. 6 ). In the case of density-

ependent demographics ( λ > 0), increased vertical transmission

lso promotes disease invasion into a disease-free equilibrium. 

. Discussion 

We have shown that one of the simplest SI epidemic models

eads to sustained multi-generational oscillations when (i) the dis-

ase transmission period is temporally distinct from the reproduc-

ion period; (ii) virulence is such that infected individuals alone

annot survive; and (iii) disease transmission is density-dependent.

hese assumptions are well matched by host–pathogen systems

here the host has discrete generations and its interaction with

he pathogen is such that only certain age classes are susceptible

o a highly virulent disease. This could apply to cyclic forest in-

ects which are known to be infected by baculoviruses, which in-

ict high mortality only in larval stages of their hosts. 

For example, western tent caterpillars (WTC, Malacosoma cal-

fornicum pluviale ) have one generation per year and overwinter

s larvae. The larval stage can get infected by a baculovirus (nu-

leopolyhedrovirus, NPV). Both WTC abundance and NPV infec-

ion level show cyclic dynamics with a period of 8–11 years on

aliano Island, BC, Canada ( Myers and Cory, 2013; 2016 ). A con-

istent characteristic of these cycles is reduced host fecundity in

eclining WTC populations, which is thought to be a sublethal ef-

ect of NPV infection ( Rothman and Myers, 1996; Cory and Myers,

009; Myers and Cory, 2016 ). Our model is thus based on some

atching assumptions and shows qualitatively similar oscillations,

ven though it is neither tailored toward nor parameterized for

his specific host–pathogen system. 

The cycles in our model can be attributed to a carry-over effect

 Royama, 1992; Ratikainen et al., 2008 ). Carry-over effects describe

he situation when the fitness of an individual depends on how the

ndividual did in the stages before. For example, the fertility of an

ndividual in summer can depend on the availability of food dur-

ng the winter, or the mortality in one season can depend on envi-

onmental contamination or injuries inflicted from fighting during

nother season. In our model, individual fitness (here in terms of

ecundity) in the Reproduction period depends on what the indi-

idual experienced in the Infection period. If the individual gets in-

ected, its fecundity will be reduced in the next period. The carry-

ver effect in our model is density-dependent, because the change

n the infection status of an individual is determined by density-

ependent disease transmission. Density-dependent carry-over ef-

ects give rise to delayed density-dependent population responses.

hile carry-over effects are defined at the individual level (consid-

ring the infection or physiological status of an individual), delayed

ensity dependence is defined at the population level by consider-

ng how population growth is affected by population density in the

revious generation. Importantly, both concepts can be destabiliz-

ng and cause higher-order cycles ( Ratikainen et al., 2008 ). 

The oscillations in our models are characterized by a phase shift

ith the disease prevalence lagging behind the total host popula-

ion density (cf. Fig. 1 ). Moreover, the oscillations have long peri-
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Fig. 4. Orbital bifurcation diagrams for varying transmission parameter β in model (4) with host density dependence. Top : b S = 2 , bottom : b S = 4 , left : b I = 0 . 5 , right : 

b I = 0 . 2 . For each value of β , the last 50 after 1,0 0 0 iterations are plotted. Initial conditions are drawn from pseudo-random uniform distribution in the unit square. Other 

parameters: p = 0 . 5 , λ = 0 . 1 . Note the different axes scales. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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ds that encompass several generations. As both reproduction and

nfection periods occur annually, the multi-annual cycles caused by

heir interplay clearly take place on another time scale stretching

ver more than one host generation. Observed periods of popula-

ion cycles typically range from 3–5 years in voles and lemmings

 Lambin et al., 20 0 0 ), 4–6 years in red grouse ( Hudson, 1992 ), and

–15 years in forest-defoliating insects ( Dwyer et al., 2004 ). 

For cycles to occur in our model, the infection needs to sup-

ress fecundity below a certain level. The critical level depends on

he horizontal and vertical transmission parameters, the fecundity

f susceptibles, and the strength of density dependence in repro-

uction (see Figs. 4 and 6 ). The fecundity of infected individuals

eeds to be at least below one for cycles to occur, which means

hat the infected part of the population has a negative growth rate.

his is what causes the host population to decline after an out-

reak with high infection prevalence. 

A lot of work on cyclic species is based on food limitation, pre-

ation, and density-dependent mortality ( Berryman, 2002 ). How-

ver, changes in reproduction, especially when carried over to the

ext generation, are also known to greatly influence population cy-

les ( Münster-Swendsen, 1991; Kendall et al., 2005; Klemola et al.,

008; Inchausti and Ginzburg, 2009; Myers and Cory, 2013; Fau-

eux et al., 2015; Ginzburg and Krebs, 2015; Myers and Cory, 2016;

adchuk et al., 2016; Krebs et al., 2018; Myers, 2018 ). Previous

athematical models have already shown that disease-reduced re-
roduction can destabilize the host population and generate multi-

ear oscillations, but they all rest on additional assumptions like

ree-living infective stages ( Anderson and May, 1980; 1981; Dobson

nd Hudson, 1992; White et al., 1996 ), exposed or latent classes

 Anderson et al., 1981; Pugliese, 1991 ), seasonal forcing ( Anderson

nd May, 1981; Brown, 1984; Smith et al., 2008 ), saturating in-

idences and highly nonlinear birth rates ( Diekmann and Kret-

schmar, 1991; Hochberg, 1991 ), and covert or sublethal infections

 Boots and Norman, 20 0 0; Boots et al., 2003 ). 

It has been proven that continuous-time models of SI (and also

IS) type with density-dependent horizontal as well as vertical

ransmission, disease-reduced fecundity, disease-induced mortality, 

nd density-dependent reproduction do not show sustained oscil-

ations ( Zhou and Hethcote, 1994 ). Hence, the novelty of our model

s that multi-year oscillations can occur due to the temporally dis-

inct periods of Infection and Reproduction. The latter are encap-

ulated by the order of events in the discrete-time formulation. By

ontrast, continuous-time models assume that all processes take

lace simultaneously, and they cannot produce cycles even when

ncorporating the same processes as in our model. 

In a variation of our model with frequency-dependent rather

han density-dependent transmission, we could not observe sus-

ained oscillations ( Hamelin et al., 2017 ). We suppose that density-

ependent transmission, at least at small population densities, is

eeded for infection levels to decline at population troughs so
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Fig. 5. Asymptotic behavior for varying horizontal transmission parameter β and 

infected host fecundity b I in model (4) with host density dependence. The attrac- 

tors are denoted by color: disease-free equilibrium (plain blue), stable coexistence 

equilibrium (plain white), endemic cycles (hatched yellow). The stability boundary 

between endemic cycles and the stable endemic equilibrium was found numerically 

for each value of b I as the largest value for β allowing for significant convergence. 

Other parameter values: b S = 2 , p = 0 . 5 , λ = 0 . 1 . We remark that, depending on ma- 

chine precision, there can be numerical artifacts for extremely large values of β (see 

Appendix E for more details). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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that the population can rebuild to start a new irruption. This

is in line with SI type models where the host population ex-

hibits a demographic Allee effect: with density-dependent trans-

mission there can be limit cycles ( Hilker et al., 2009 ), whereas with

frequency-dependent transmission there are no sustained oscilla-

tions ( Hilker et al., 2007 ). 

To summarize, we have shown in this paper that a very sim-

ple discrete-time SI model can generate periodic or quasi-periodic
Fig. 6. Asymptotic behavior for varying horizontal transmission parameter β and infected

transmission parameters in rows: p = 0 . 05 ( top ), p = 0 . 5 ( middle ), and p = 1 ( bottom ), an

λ = 1 ( right ). The panel in the middle corresponds to Fig. 5 . The attractors are denoted b

white), endemic cycles (yellow with diagonal hatching), total-infection equilibrium (red 

grows without bounds (vertical hatching). Other parameter value: b S = 2 . (For interpretati

version of this article.) 
ulti-generational oscillations, both with density-dependent or

ensity-independent host reproduction. The cycles are caused by

irulence effects that are carried over from the infection season to

he reproductive season. Our results underline the importance of

equentially occurring events in the course of a year, because the

emporal separation between infection and virulence-affected re-

roduction can drive cycles that are impossible in continuous-time

odels where all processes take place simultaneously. 

Any model makes limiting assumptions. Our discrete-time SI

odel based on the Poisson distribution assumes that the mean

umber of infectious contacts per susceptible host during the In-

ection period is proportional to the density of infected individuals

t the beginning of that period. This means that newly infected

ndividuals do not contribute to the epidemiological dynamics dur-

ng the Infection period. This assumption fits a number of biologi-

al systems such as mono-cyclic diseases in plants ( Madden et al.,

007 ), any situation in which the latent period is greater than the

nfection period (e.g. rabies in foxes Anderson, 1982 ), or insect in-

ections with latent baculoviruses ( Cory and Myers, 2003; Il’inykh,

007 ). Furthermore, by focusing on semelparous species (which

ie after the Reproduction period) we disregard the possible ef-

ects of disease-induced mortality. Since disease-reduced fecundity

nd disease-induced mortality are both expressions of virulence,

t would be interesting to investigate whether the critical level of

isease-induced fertility reduction could be lower in the presence

f disease-induced mortality. 

To take into account ongoing infections as well as deaths of in-

ected hosts, an alternative model framework would be to consider

pidemiological dynamics in continuous time, leading to a semi-

iscrete model, as in Hamelin et al. (2016a) for example. Interest-

ngly, complex dynamics (multi-year cycles and chaos) occur in a

elated semi-discrete model ( Mailleret et al., 2012 ), although host

emographics were tailored for agricultural systems; namely, host

ensity at the beginning of the Infection period was assumed to

e always the same regardless of epidemics in the previous sea-
 host fecundity b I in model (4) with host density dependence, for various vertical 

d various density dependence parameters in colums: λ = 0 ( left ), λ = 0 . 1 ( center ), 

y color: disease-free equilibrium (plain blue), stable coexistence equilibrium (plain 

with crossed hatching). For λ = 0 and sufficiently large b I the infected population 

on of the references to color in this figure legend, the reader is referred to the web 
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ons. Therefore, the mechanism driving the oscillations was not the

ame as the one described in this study. It would be interesting to

xtend the current approach to a semi-discrete model where host

opulation dynamics follow a natural pattern. Preliminary investi-

ations indicate that sustained oscillations are possible as well in

 simple related semi-discrete model, but they do not depend on

he parameters in the same way. Therefore, we leave this study for

uture research. 
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ppendix A. Alternative order of events 

Here, we assume that the period of Infection occurs after Re-

roduction: 

 → ︸︷︷︸ 
Reproduction 

t ′ → ︸︷︷︸ 
Infection 

t + 1 . 

he model takes the form: 

(t + 1) = S(t ′ ) exp 

(
−βI(t ′ ) 

)
, 

I(t + 1) = I(t ′ ) + S(t ′ ) 
[
1 − exp 

(
−βI(t ′ ) 

)]
, (A.1) 

here 

(t ′ ) = ρS S(t) + 

b S S(t) + (1 − p) b I I(t) 

1 + λ[ S(t) + I(t)] 
, 

I(t ′ ) = ρI I(t) + 

pb I I(t) 

1 + λ[ S(t) + I(t)] 
. (A.2) 

or consistency with the model in the main text, we also assume

S = ρI = 0 (semelparity) and, by combining (A.1) with (A.2) , arrive

t 

(t + 1) = 

b S S(t) + (1 − p) b I I(t) 

1 + λN(t) 
exp 

(
−βpb I I(t) 

1 + λN(t) 

)
, 

I(t + 1) = 

I(t ) 
[
1 − (1 − p) b I exp 

(−βpb I I(t) 
1+ λN(t) 

)]
+ b S S(t ) 

[
1 − exp 

(−β
1+

1 + λN(t) 

odel (A.3) is structurally equivalent to model (4) in the main

ext. As the two models are permutations of the same two pro-

esses (Reproduction and Infection), they only differ in when the

opulation densities are being censused (before Reproduction or

efore Infection). Hence, there are quantitative differences in the

easured population densities, but the system dynamics of the

wo models are qualitatively the same ( ̊Aström et al., 1996; Hilker

nd Liz, 2013 ). We have checked this in numerical simulations

nd obtained the same bifurcation diagrams for model (A.3) as in

ig. 6 . That is, both (A.3) and (4) show sustained multi-generational

scillations, so that our main results (Neimark–Sacker bifurca-

ion and limit cycles) do not depend on the specific order of

vents (whether Reproduction precedes Infections or the other way

round). 

ppendix B. Historical aside: the deterministic Reed–Frost 

odel 

It seems that one of the first discrete-time epidemiological

odels is due to unpublished work by Reed and Frost from the
) 
 

)]
. (A.3) 

920s, which is actually a rather classical model (see Wilson and

urke, 1942; Abbey, 1952; Sartwell, 1976; Daley and Gani, 1999;

llen, 2008 ). The deterministic version of the Reed–Frost model

eads 

 n +1 = S n (1 − p) I n , I n +1 = S n 
(
1 − (1 − p) I n 

)
, (B.1)

here p is the probability of “effective contact” (i.e., sufficient

or disease transmission) between any two individuals of the host

opulation during one time step. Note that this discrete-time

IR model has been communicated before the famous paper by

ermack and McKendrick (1927) was published. And note that it

eads to the final size equation ( Wilson and Burke, 1942 ), i.e. for

N > 1, the system converges to some N > S ∞ 

> 0 and I = 0 .

ilson and Burke (1942 , p. 366) wrote “I strongly urged Dr. Frost

o publish his theory of the epidemic curve, but he thought it

oo slight a contribution.”, also quoted by Sartwell (1976) . Yet, the

eed–Frost model implicitly assumes that both the latent and in-

ectious periods are equal to one time step. This might explain why

t is not so well known, despite its simplicity. 

Letting p = 1 − exp (−β) , system (B.1) is equivalent to 

 n +1 = S n exp (−βI n ) , I n +1 = S n ( 1 − exp (−βI n ) ) . 

his is almost the same model as the horizontal infection model

iven in (1) , except that infected individuals do not survive be-

ween time steps. Our purely epidemic model (without host re-

roduction) in the Infection period can therefore be fairly credited

o Reed and Frost. 

ppendix C. Comparison with the Régnière (1984) model 

We can rewrite model (4) as 

(t + 1) = (1 − p) 

[
b I 
D t 

I(t) + 

b I 
D t 

�t S(t) 

]
+ (1 − P t ) 

b S 
D t 

S(t) , 

I(t + 1) = p 

[
b I 
D t 

I(t) + 

b I 
D t 

�t S(t) 

]
, (C.1) 

here D t = 1 + λ(S(t) + I(t)) accounts for density-dependent de-

ographics, �t = 1 − exp (−βI(t)) is the probability of infection

ver the course of the Infection period, and b I < 1 < b S .

égnière (1984) ignores density-dependent demographics, i.e. D t =
 . In his model, the only nonlinear term is the probability of infec-

ion, for which he assumes 

ˆ 
t = ( 1 − exp (−βI(t)) ) 

ψ 

. 

he additional parameter ψ ≥ 1 accounts for larger spread of dis-

ase propagules. If we let ψ = 1 , D t = 1 ( λ = 0 ), and the three pa-

ameters a, b , and c in the Régnière (1984) model be defined as

ollows: 

 = b = b I and c = b S , 

hen the two models are equivalent. In Régnière (1984) , parame-

ers a, b , and c are the fecundity of “diseased”, “newly infected”,

nd disease-free hosts, respectively. With “diseased“ individuals

e refers to those who are born already being infected, i.e. ver-

ically infected, whereas “newly infected” individuals are consid-

red those who were born disease-free but got infected during the

orizontal transmission period. That is, Régnière (1984) implicitly

https://doi.org/10.13039/100000001
https://doi.org/10.13039/100014455
https://doi.org/10.13039/100011937
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Fig. D.1. Stability diagram for the endemic coexistence equilibrium in the model 

with density-independent reproduction ( λ = 0 ). The stability boundary is obtained 

from the Jury conditions and shown for different values for the vertical transmis- 

sion parameter. The endemic coexistence equilibrium is locally asymptotically stable 

above and unstable below the boundaries. 
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tracks two different states of infection (getting infected either after

horizontal or vertical transmission) and additional inter-seasonal

effects (survival and fecundity depending on infection being ac-

quired in the season with horizontal or vertical transmission). Also,

note that the model in Régnière (1984) is derived by following a

schematic diagram, where the order of events is not explicit and,

therefore, some of the underlying assumptions remain concealed. 

Régnière (1984) assumes a < 1 and c > 1, and a ≤ b < c . The

latter differs from our model where a = b. Furthermore, we con-

sider ψ = 1 and D t ≥ 1 ( λ ≥ 0). 

Appendix D. Equilibria and stability analysis 

D1. Density-independent reproduction ( λ = 0 ) 

We consider model (4) with λ = 0 for b S > 1, b I < b S and

0 < p ≤ 1 (the case where p = 0 immediately drives the infected

population to extinction and leaves the susceptible population to

grow geometrically): 

S(t + 1) = (1 − p) b I [ I(t) + S(t) ] + [ b S − (1 − p) b I ] S(t)e −βI(t) 

I(t + 1) = pb I 
(
I(t) + S(t) 

[
1 − e −βI(t) 

])
. 

The trivial point (0,0) is always an unstable equilibrium. It has

the eigenvalues b S > 1 and pb I . 

Due to geometric host population growth in the absence of dis-

ease, the trivial equilibrium is the only equilibrium with S ∗ = 0 or

I ∗ = 0 . In particular, there is no disease-free or total-infection equi-

librium. However, when having full vertical transmission p = 1 ,

there is a possibility for a totally-infected population with b I > 1

to grow geometrically in the absence of susceptibles; this is similar

to the geometric host population growth in the absence of disease.
In the general case, all non-trivial equilibria must satisfy the

two following conditions: 

1 − b I = ( b S − b I ) 
S ∗

S ∗ + I ∗
e −βI ∗ and 

S ∗

I ∗
= 

b S − b I 

( b S − 1 ) pb I 
− 1 =: R ( b S , b I , p ) . 

The first condition imposes that b I < 1. If this is the case, then R ( b S , b I , p )

is positive. Moreover, there can be at most one coexistence equilibrium

since, if it exists, it must have the components: 

S ∗ = R (b S , b I , p) 
L (b S , b I , p) 

β
, I ∗ = 

L (b S , b I , p) 

β
, (D.1)

with 

L (b S , b I , p) = ln 

(
b S − b I − (b S − 1) pb I 

1 − b I 

)
. 

The assumption that b I < 1 is sufficient for both R ( b S , b I , p )

and L ( b S , b I , p ) to be defined and positive. As a consequence, it is

the only condition for the existence of the coexistence equilibrium,

which is unique. 

The Jacobian matrix evaluated at the coexistence equilibrium

can be written as: ( 

1 − (b S −1) p(1 −p) b 2 I 

b S −b I −(b S −1) pb I 
(1 − p) b I + 

b S −(1 −p) b I 
pb I 

L (b S , b I , p) b I −1 
b S −1 

pb I 
b S −1 −(b S −1) pb I 
b S −b I −(b S −1) pb I 

pb I 
[
1 + 

1 −b I 
(b S −1) pb I 

L (b S , b I , p) 
]

) 

. 

C = 

(1 + b S )[ b S − b

A = 1 + 

(1 − b I ) b S 
(

t

Thus, the stability of the coexistence equilibrium does not de-

end on the horizontal transmission parameter β . But β does

ffect the population densities at equilibrium: the larger β , the

maller S ∗ and the smaller I ∗ (see Eq. (D.1) ). 

To analyze the stability of the coexistence equilibrium, we now

mploy the Jury conditions (e.g. Allen, 2007 , pp. 64). Let 

 = 1 − det J, 

B = det J − Tr J + 1 , 

 = det J + Tr J + 1 . 

he Jury conditions A, B, C > 0 are necessary and sufficient con-

itions for the equilibrium to be locally asymptotically stable. We

ave 

 = −(1 − b I ) log 

(
1 − b I 

b S − b I − pb I (b S − 1) 

)
> 0 . 

lso, 

b I (b S − 1)] B + 2(b S − 1)[ b S (1 − pb 2 I ) − b I (1 − p)] 

(b S − 1)[ b S − b I − pb I (b S − 1)] 
. 

umerical explorations suggest C > 0, so that the stability of the

oexistence equilibrium entirely depends on the sign of 

b I − pb I (b S − 1)] log 
(

1 −b I 
b S −b I −pb I (b S −1) 

)
− pb I (b S − 1) 

)
(b S − 1)[ b S − b I − pb I (b S − 1)] 

. 

he stability of the coexistence equilibrium is therefore determined

y three parameters. Fig. D.1 shows a stability diagram in the ( b S ,

 I ) parameter plane for different values of p . The coexistence equi-

ibrium gets destabilized by high reproductive capability (large b S ),

igh virulence (low b I ), and imperfect vertical transmission (low p ).

Recall that, in the absence of infection, the host population

rows geometrically in the density-independent model. We have

hown that the disease may regulate the unbounded host growth

o a stable endemic equilibrium (in the analysis above) or to sus-

ained endemic oscillations (shown numerically in the main text). 
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2. Density-dependent reproduction ( λ > 0) 

We consider model (4) with λ > 0, again for b S > 1, b I < b S 
nd 0 < p ≤ 1. There are four potential equilibria. 

1. The trivial extinction equilibrium (0,0) always exists. The eigen-

values of the Jacobian matrix evaluated at this trivial equilib-

rium are b S and pb I ; since b S > 1, this equilibrium is unstable.

The eigenvalues are the same as for the density-independent

model; this is because density dependence does not play a role

at the trivial equilibrium. 

2. The disease-free equilibrium 

(
b s −1 

λ
, 0 

)
exists when there is den-

sity dependence ( λ > 0). It is stable if 

β ≤ λ(b S − pb I ) 

pb I (b S − 1) 
. 

3. The total-infection equilibrium is (0 , 
b I −1 

λ
) . The conditions for

its existence are: density dependence ( λ > 0), perfect vertical

transmission ( p = 1 ), and sustainability of an infected popula-

tion ( b I > 1). It is stable if 

β ≥ λ

b I − 1 

ln 

(
b S 
b I 

)
. 

4. There can be a coexistence equilibrium ( S ∗, I ∗). The Jacobian

matrix evaluated at any equilibrium can be written as: ⎛ 

⎝ 

qb I +(b S −qb I )e −βI ∗ (1+ λI ∗) 
( 1+ λN ∗) 2 

qb I −(b S −qb I ) S 
∗e −βI ∗ (β+ λ+ βλN ∗) 

( 1+ λN ∗) 2 

pb I 
1 −e −βI ∗ (1+ λI ∗) 

( 1+ λN ∗) 2 
pb I 

1+ S ∗e −βI ∗ (β+ λ+ βλN ∗) 
( 1+ λN ∗) 2 

⎞ 

⎠ , 

where N 

∗ = S ∗ + I ∗ and q = 1 − p. Numerical simulations in the

main text reveal that the coexistence equilibrium can be stable

or unstable. The bifurcation diagrams in Fig. 4 suggest that the

change in stability is brought about by a Neimark–Sacker bifur-

cation. 

ppendix E. Numerical warning 

For certain extreme parameter values, we have observed nu-

erical artifacts when iterating model (4) numerically. They are

ue to numerical inaccuracies when very small numbers are ap-

roximated as zero in simulations. These artifacts occur when the

oexistence equilibrium is unstable and when there are limit cy-

le oscillations on an invariant curve. For rather large values of

he transmission parameter β , the invariant curve gets very close

o the axes of the phase plane and suddenly the oscillations “col-

apse” in the simulations. In that case, numerical simulations ap-

roached the disease-free equilibrium, for any simulation length

e considered. The surprising result is that the disease-free equi-

ibrium is an unstable saddle point for those parameter values,

hich is why orbits should leave the vicinity of the disease-free

quilibrium sooner or later. The resolution is that the number of

he infected population density gets so small that it is approxi-

ated numerically as zero such that the simulation gets trapped

n the boundary axis determined by I t = 0 . A similar numerical

rtifact has been observed by Kang and Armbruster (2011) in a

iscrete-time plant–herbivore model. 

This artifact is a numerical problem. In practice, we could

ave extinction due to stochastic effects already for smaller val-

es of β—namely when the invariant curve gets just close enough

o one of the axes. Actually, this could apply not only to I t but also

o S t . 
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