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a b s t r a c t

A model of phytoplankton–zooplankton prey–predator dynamics is considered for the case

of viral infection of the phytoplankton population. The phytoplankton population is split

into a susceptible (S) and an infected (I) part. Both parts grow logistically, limited by a

common carrying capacity. Zooplankton (Z) as a Holling-type II predator is grazing on

susceptibles and infected. The local and spatial analyses of the S–I–Z model with lysogenic

infection have been presented in a previous paper (Malchow et al., 2004b. Oscillations and

waves in a virally infected plankton system: Part I: The lysogenic stage. Ecol. Complexity 1

(3), 211–223). This lysogenic stage is rather sensitive to environmental variability. Therefore,

the effect of a transition from lysogeny to lysis is investigated here. The replication rate of

the infected species instantaneously falls to zero. A deterministic and a more realistic

stochastic scenario are described. The spatiotemporal behaviour, modelled by deterministic

and stochastic reaction-diffusion equations, is numerically determined. It is shown that the

extinction risk of the infected is rather high in the deterministic system, whereas the

environmental noise enhances their chance of spatial spread and survival.
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1. Introduction

The discovery that viruses are extremely abundant in marine

environments (by more than three orders of magnitude than

previously thought) and that they infect a wide spectrum of

hosts ranging from bacteria to eukaryotic primary producers

(Bergh et al., 1989; Proctor and Fuhrman, 1990; Suttle et al.,

1990) has stipulated a lot of research during the last one and a

half decade. It is now known that marine viruses influence
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species diversity, phytoplankton mortality, gene transfer,

global biogeochemical cycles and the termination of algal

blooms. Although they are regarded as important members of

the microbial food web and regulating factors in marine

ecosystems, the understanding of the role of viral infection in

the phytoplankton population is just at its beginning and

continues to unfold; for recent reviews, see Fuhrman (1999),

Suttle (2000b), Suttle (2005), Weinbauer (2004), Wilhelm and

Suttle (1999) and Wommack and Colwell (2000).
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There are two main replication cycles of viruses that infect

phytoplankton (Fuhrman and Suttle, 1993; Suttle, 2000a;

Mann, 2003): (i) lytic (or virulent) infections with destruction

and without reproduction of the host and (ii) lysogenic (or

temperate) infections in which viruses integrate their genome

into the host’s genome and multiply along with the host until

the lytic cycle is induced. The shift to the lytic mode can be

triggered by a variety of environmental stresses such as

radiation, pollution, temperature changes and nutrient deple-

tion or may occur spontaneously. However, the exact

mechanisms controlling the switch from lysogenic to lytic

existence are currently unknown (Suttle, 2000a; Sullivan et al.,

2003; Bidle and Falkowski, 2004; Hewson et al., 2004; McDaniel

and Paul, 2005).

Lysogeny in freshwater filamentous cyanobacteria (which

are major primary producers) is well-known since the early

1970s, cf. the review by Suttle (2000a) and the references

therein. The relative importance of lysis and lysogeny in the

marine environment is still unclear (Wilson and Mann, 1997;

Jiang and Paul, 1998; Suttle, 2000a; Wommack and Colwell,

2000; Chen and Lu, 2002; Stopar et al., 2004), but there is

increasing evidence for the occurrence of lysogeny in marine

representatives. Sode et al. (1994) were the first to isolate a

lysogen infecting a cultured Synechococcus species from the

coastal waters off of Kyushu, Japan, and later described the

induction by heavy metals (Sode et al., 1997). Lysogeny in the

marine filamentous form Phormidium sp. has been reported by

Ohki and Fujita (1996). There is also a report describing the

induction in cultured and natural samples of the filamentous

cyanobacterium Trichodesmium sp. (Ohki, 1999). Recently, it

has been demonstrated that lysogeny occurs in natural

populations of marine Synechococcus, namely in Tampa Bay,

FL, USA (McDaniel et al., 2002), and during a natural bloom in a

pristine fjord in British Columbia, Canada (Ortmann et al.,

2002). Moreover, several studies provide evidence that viruses

establish lysogenic associations and were induced to the lytic

mode (Waterbury and Valois, 1993; Wilson et al., 1996, 1998;

Marston and Sallee, 2002; Sullivan et al., 2003; Hewson et al.,

2004).

Mathematical models of the growth and interactions of

virally infected phytoplankton populations are correspond-

ingly rare. The already classical publication is by Beltrami and

Carroll (1994). They showed that a lytic viral infection can

destabilize an otherwise stable phytoplankton–zooplankton

food chain. In combination with seasonal forcing, their model

exhibits irregular fluctuations which mimic the recurrent

bloom patterns of the dinoflagellate Noctiluca scintillans in the

German Bight (Uhlig and Sahling, 1992) as well as of diatoms at

Scripps Pear at La Jolla (Tont, 1976). More recent work is of

Chattopadhyay and Pal (2002) and Singh et al. (2004), but based

on some debatable assumptions: recovery from disease,

zooplankton feeds 10 times more on infected phytoplankton

(Chattopadhyay and Pal, 2002) and infected phytoplankton is

more vulnerable to predation by zooplankton (Singh et al.,

2004). Moreover, both articles assume mass action transmis-

sion of the disease.

In this paper, we draw upon the spatially extended models

by Malchow et al. (2004b, 2005) who observed oscillations and

waves in a trophic food chain with more realistic Holling-

types II and III grazing and frequency-dependent disease
transmission. The latter is also called proportionate mixing or

standard incidence (Nold, 1980; Hethcote, 2000; McCallum

et al., 2001). These models consider lysogenic infection before

the switch to the lytic cycle (thus actually resembling a

chronic infection). Hilker and Malchow (2006) have provided a

detailed mathematical and numerical analysis of the local

model for lysogenic/chronic and lytic infections.

Here we focus on models incorporating the switch from the

lysogenic to the lytic cycle and its consequences for the local

and spatiotemporal dynamics of interacting phytoplankton

and zooplankton. In the next section, the basic mathematical

model is introduced. Then we consider a deterministic

induction to lytic infection in the local dynamics. Section 4

deals with both a deterministic and stochastic switch from

lysogeny to lysis in the spatially extended model. Further-

more, the impact of multiplicative noise (Garcı́a-Ojalvo and

Sancho, 1999; Allen, 2003; Anishenko et al., 2003) in the

population dynamics is investigated.
2. The basic mathematical model

As in Part I of this paper (Malchow et al., 2004b), the prey–

predator dynamics of phytoplankton and zooplankton is

described by a standard model (Rosenzweig and MacArthur,

1963; Steele and Henderson, 1981; Scheffer, 1991; Malchow,

1993; Pascual, 1993). The phytoplankton population is split

into a susceptible part X1 and an infected portion X2. Their

growth rates r1,2 are scaled as the ratio of the local rates rloc
1;2 and

the spatial mean hri. Zooplankton X3 is a Holling-type II grazer

with maximum grazing rate a/b and natural mortality m3.

Then, the model system reads for symmetric inter- and

intraspecific competition of susceptibles and infected in time t

and two horizontal dimensions~r ¼ fx; yg

@Xið~r; tÞ
@t

¼ f i½Xð~r; tÞ� þ dDXið~r; tÞ; i ¼ 1�3; (1)

where

f 1 ¼ r1X1ð1� X1 � X2Þ �
aX1

1þ bðX1 þ X2Þ
X3 � l

X1X2

X1 þ X2
; (1a)

f 2 ¼ r2X2ð1� X1 � X2Þ �
aX2

1þ bðX1 þ X2Þ
X3

þ l
X1X2

X1 þ X2
�m2X2; (1b)

f 3 ¼
aðX1 þ X2Þ

1þ bðX1 þ X2Þ
X3 �m3X3: (1c)

All quantities are dimensionless. The diffusion coefficient d

describes eddy diffusion. Therefore, it must be equal for both

species. Proportionate mixing with transmission coefficient l

as well as an additional disease-induced mortality of infected

(virulence) with rate m2 is assumed. The vector of population

densities is X = {X1,X2,X3}. In the case of lytic infection, the first

term on the right-hand side of Eq. (1b) would describe the

losses due to natural mortality and competition. At first,

lysogenic infections with r1 � r2 > 0 will be considered. The

growth rate of susceptibles is often higher than that of infected
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(Suttle et al., 1990). Secondly, the lysogenic viral replication

cycle switches to the lytic one due to its high sensitivity to

environmental fluctuations. In order to model the latter, mul-

tiplicative noise is introduced in Eq. (1), i.e.,

@Xið~r; tÞ
@t

¼ f i½Xð~r; tÞ� þ dDXið~r; tÞ þ vi½Xð~r; tÞ� � jið~r; tÞ;

i ¼ 1�3;

(2)

where jið~r; tÞ is a spatiotemporal white Gaussian noise, i.e., a

random Gaussian field with zero mean and delta correlation

hjið~r; tÞi ¼ 0; hjið~r1; t1Þjið~r2; t2Þi ¼ dð~r1 �~r2Þdðt1 � t2Þ;

i ¼ 1�3:
(2a)

vi½Xð~r; tÞ� is the density-dependent noise intensity. The sto-

chastic modelling of population dynamics requires this den-

sity dependence, i.e., multiplicative noise. Throughout this

paper, we assume

vi½Xð~r; tÞ� ¼ vXið~r; tÞ; i ¼ 1�3; v ¼ constant: (2b)

3. The local dynamics with deterministic
switch

The local dynamics (d = 0) has been described by Malchow

et al. (2004b) for the lysogenic case and r1 = r2. A general and

more detailed analysis has been presented by Hilker and

Malchow (2006). Their results will not be listed here. The

interest is rather in the spatiotemporal dynamics, starting

from a system with lysogenic and then switching to lytic

infection of the prey. Only one local example for such a switch

is drawn in Fig. 1. After the transition, there is no further
Fig. 1 – Non-oscillating endemic state with lysogenic

infection switching at t = 100 to an oscillating endemic

state with lytic infection. The growth rate of infected r2 is

set from rmax
2 ¼ 0:4 to 0, the virulence m2 from mmin

2 ¼ 0:2 to

mmax
2 ¼ 0:3 and the transmission rate l from lmin = 0.6 to

lmax = 0.9, cf. text. Other parameter values: r1 = 1, a = b = 5,

m3 = 0.625. Susceptibles are plotted with solid line,

infected with dashed line and zooplankton with dots.
replication of infected. For modelling purpose, we simply set

r2 = 0 when the switch occurs. A more technical assumption

for the simulation is that the remaining natural mortality of

the infected is added to the virulence, leading to a higher

effective mortality of the infected, i.e., the parameter m2

increases. Furthermore, the lytic cycle generates many more

viruses, i.e., the transmission rate l increases as well. And,

finally, the intraspecific competition of the dying infected

phytoplankton cells vanishes, whereas the interspecific

competition of susceptibles and infected becomes non-

symmetric, i.e., the dead and dying infected still influence

the growth of the susceptibles and contribute to the carrying

capacity but not vice versa.

As to be expected, the switch from lysogeny to lysis results

in a much lower mean abundance of infected though

endemicity is still stable. However, the system responds

rather sensitively to parameter changes, especially to varia-

tions of virulence and transmission rate and the infected can

easily go extinct. As in the preceding paper, multiplicative

noise supports the survival of the endangered species, i.e.,

there is always some probability to survive in a noisy

environment while the deterministic setting inevitably leads

to extinction.
4. The spatiotemporal dynamics

Now, we consider the spatiotemporal dynamics of the

plankton model (2), i.e., zooplankton, grazing on susceptible

and virally infected phytoplankton, under the influence of

environmental noise and diffusing horizontally in two-

dimensional space.

4.1. Numerical methods, boundary and initial conditions

The diffusion terms have been integrated using the semi-

implicit Peaceman–Rachford alternating direction scheme

(Peaceman and Rachford, 1955), cf. Thomas (1995). For the

interactions and the Stratonovich integral of the noise terms,

the explicit Euler–Maruyama scheme has been applied

(Maruyama, 1955), cf. Kloeden and Platen (1999) and Higham

(2001). The time step of the numerical scheme is Dt = 0.01. The

spatial grid is a 99 � 99 point square with spacing Dx = Dy = 1.

Periodic boundary conditions have been chosen for all

simulations (in order to avoid boundary effects).

The initial conditions are as follows: the space is filled

with the non-oscillating endemic state ðXS
1 ;X

S
2 ;X

S
3Þ ¼

ð0:109;0:224;0:141Þ, cf. Fig. 1. Furthermore, there are two

localized patches in space. They can be seen in Fig. 2. The
Fig. 2 – Initial conditions for all spatiotemporal simulations.
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Fig. 3 – Spatial propagation of zero replication rate of the infected.

Fig. 4 – Dynamics of susceptibles. No noise.

Fig. 5 – Dynamics of susceptibles. Noise intensities v1 = v2 = v3 = 0.05.
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Fig. 6 – Noisy bistable dynamics of r3 and resulting local

switches of r2 for rmax
3 ¼ 2, rcrit

3 ¼ 1:5, rmin
3 ¼ 1 and v4 = 0.1.

The spatial mean of r2 decreases from the maximum as

homogeneous initial condition to a value of approximately

0.15. The growth rate of infected r2 switches from

rmax
2 ¼ 0:4 to 0, the virulence m2 from 0.2 to 0.3 and the

transmission rate l from 0.6 to 0.9, cf. text. Other

parameter values: r1 = 1, a = b = 5, m3 = 0.625.
grey scale changes from high population densities in black

colour to vanishing densities in white.

One patch is located in the upper middle of the model

area with susceptibles X1 = 0.550, four grid points further

away from zooplankton X3 = 0.450 in each direction. The

infected are at XS
2. In the other patch at the right, the

infected X2 = 0.333 are further away from zooplankton

X3 = 0.036, whereas the susceptibles are at XS
1. These initial

conditions are the same for deterministic and stochastic

simulations.

The chosen system parameters generate oscillations in the

center of the patches. The latter act as leading centers for

target pattern waves that collide and break up to form spirals.

Increasing noise blurs this (naturally unrealistic) patterning,

cf. also Malchow et al. (2004a,b).

4.2. Deterministic switching from lysogeny to lysis

At first, switching begins in the area with the highest initial

density of infected, i.e., in the right-hand patch. The growth

rate of infected r2 vanishes, whereas virulence and natural

mortality of infected add up to a higher effective virulence m2

and also the transmission rate l increases as described in

Section 3. It is assumed that these parameter changes

propagate through space like a Fisher wave (1937). If an

auxiliary quantity r3 with Fisher dynamics is introduced,

@r3ð~r; tÞ
@t

¼ r3ð1� r3Þ þ dDr3; (3)

then

r2ð~r; tÞ ¼ rmax
2 ð1� r3Þ; (3a)

m2ð~r; tÞ ¼ mmin
2 þ ðmmax

2 �mmin
2 Þr3; (3b)

lð~r; tÞ ¼ lmin þ ðlmax � lminÞr3: (3c)

The initial conditions are r3 = 1 in the right patch and 0

elsewhere. For simplicity, the diffusivity d is assumed to

be the same as for all the populations. Its value of d = 0.05

has been chosen from Okubo’s diffusion diagrams (1971) in

order to model processes on a kilometer scale. The resulting

spatial propagation of r2 = 0 is drawn in white colour in

Fig. 3.

The corresponding dynamics of susceptibles is plotted in

Fig. 4. The presentation of susceptibles has been chosen

because of richer contrast. The patterns of infected are similar.

The break-up of concentric waves to a rather complex

structure with spirals is nicely seen. In the long run, pinning-

like behaviour of pairs of spirals is found. This effect is well-

known from excitation waves in cardiac muscles, cf. the

classical publications by Davidenko et al. (1992) and Pertsov

et al. (1993). Here, the biological meaning remains unclear. The

almost fixed pair-forming and rapidly rotating spirals

approach each other extremely slowly, collide and burst. A

weak multiplicative noise accelerates this process, a fact

shown in Fig. 5. Stronger noise, i.e., higher environmental

variability, suppresses the generation of pins. Finally, the

homogeneously oscillating endemic state remains.
The system parameters have been chosen to guarantee the

survival of all three populations under deterministic condi-

tions. The sample run for Fig. 5 with 5% noise also yields this

final endemic coexistence. However, after the switch to cell

lysis, it should be noted that there is only a certain survival

probability for all three populations, the lowest of course being

the one for the infected.
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Fig. 7 – Spatiotemporal pattern of r2.

Fig. 8 – Deterministic dynamics of susceptibles with noisy switch. v1 = v2 = v3 = 0, v4 = 0.1. The almost stationary spiral pairs

do still exist.

Fig. 9 – Noisy dynamics of susceptibles and noisy switch. vi = 0.1, i = 1–4. The ‘‘pins’’ cannot be found anymore.
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4.3. Stochastic switching

The deterministic once-for-ever switching mechanism is

highly unrealistic. Moreover, there is some evidence that lytic

infections can become lysogenic (Herskowitz and Hagen, 1980;

Moebus, 1996; Wilson et al., 1996; Oppenheim et al., 2005). One

has to consider that only a certain fraction of viruses begins

with the lysogenic replication cycle locally and then switches.

To model this, we redefine the auxiliary quantity r3 to obey

bistable kinetics and multiplicative noise, i.e.,

@r3ð~r; tÞ
@t

¼ ðr3 � rmin
3 Þðr3 � rcrit

3 Þðrmax
3 � r3Þ þ v4r3 � jð~r; tÞ: (4)

The noise forces system (4) to switch between its stable sta-

tionary states rmin
3 and rmax

3 (Nitzan et al., 1974; Ebeling and

Schimansky-Geier, 1980; Malchow and Schimansky-Geier,

1985). It is assumed that the replication rate of the infected

switches accordingly, i.e.,

if r3 > rcrit
3

thenm2 ¼ mmin
2 ; l ¼ lmin; r2 ¼ rmax

2 ðlysogenyÞ;
(4a)

if r3 � rcrit
3 thenm2 ¼ mmax

2 ; l ¼ lmax; r2 ¼ 0 ðlysisÞ: (4b)

This phenomenon as well as the temporal development of the

spatial mean and the spatiotemporal pattern of r2 is drawn in

Figs. 6 and 7, respectively. Initially, the whole system is in the

lysogenic state (4a).

At first, the simulation is run with noisy switches of r2, l

and m2 but deterministic population dynamics. In this

unrealistic setting, the pins can still be seen, cf. Fig. 8.

If also the population dynamics is subject to noise, the

result becomes more realistic. The pins are suppressed and

the plankton forms a rather complex noise-induced patchy

structure, cf. Fig. 9.
5. Conclusions

A conceptual biomass-based stochastic reaction-diffusion

model of phytoplankton–zooplankton prey–predator

dynamics has been investigated for temporal, spatial and

spatiotemporal dissipative pattern formation in a determi-

nistic and noisy environment, respectively. It has been

assumed that the phytoplankton is partly virally infected

and the virus switches from a lysogenic to a lytic replication

cycle.

The logistic growth rate of lysogenically infected has been

about 40% of the growth rate of susceptible phytoplankton.

The local dynamics has been used to tune the system

parameters in a way that the infected survive after switching

from lysogeny to lysis.

In the spatial model, the switch has first been assumed to

be deterministic, beginning at a certain position and then

propagating like a Fisher wave. The populations have shown a

complex wavy structure with formation of almost pinned

pairs of spirals. The biological meaning of this pattern is

unclear. The pair formation has disappeared for increasing

noise.
Deterministic switching is an unrealistic once-for-ever

mechanism. Therefore, a stochastic method has been devel-

oped and applied. Noisy switches and population dynamics

generate a complex patchy spatiotemporal structure that is

typical for natural plankton populations. The presented

sample runs have led to a final endemic state with coexistence

of susceptibles, infected and zooplankton like in the determi-

nistic case. However, one should be aware that the survival

probability of the system with all non-zero populations is

smaller than 1. Thus, there are good chances that the three-

component system switches to one of its subsystems. Noise

has not only an impact on the spatiotemporal coexistence of

populations but its presence is necessary to blur distinct

artificial population structures like target patterns or spirals

and to generate more realistic fuzzy patterns.
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