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ABSTRACT: Infectious diseases that affect their host on a long time-
scale can regulate the host population dynamics. Here we show that
a strong Allee effect can lead to complex dynamics in simple epidemic
models. Generally, the Allee effect renders a population bistable, but
we also identify conditions for tri- or monostability. Moreover, the
disease can destabilize endemic equilibria and induce sustained os-
cillations. These disappear again for high transmissibilities, with
eventually vanishing host population. Disease-induced extinction is
thus possible for density-dependent transmission and without any
alternative reservoirs. The overall complexity suggests that the system
is very sensitive to perturbations and control methods, even in pa-
rameter regions with a basic reproductive ratio far beyond R, = 1.
This may have profound implications for biological conservation as
well as pest management. We identify important threshold quantities
and attribute the dynamical behavior to the joint interplay of a strong
Allee effect and infection.
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Introduction

Infectious diseases and parasites can be important drivers
of their host population (Anderson and May 1979; Hudson
et al. 2001) and are held responsible for a large number
of extinctions (Daszak et al. 1999; Harvell et al. 2002;
Smith et al. 2006). While mathematical models have
greatly contributed to the understanding of disease dy-
namics (Bailey 1975; Anderson and May 1991; Diekmann
and Heesterbeek 2000), the vast majority of models are
based on only simple demographic processes. This is prob-
ably due to a prevailing interest in human epidemics, in
which the timescale of the disease is short and host de-
mography can thus often be ignored. Many animal pop-
ulations, however, are affected by fatal diseases on a time-
scale that is not negligible in comparison with the life
expectancy. Here we show that the existence of a strong
Allee effect (population decline at small densities) can lead
to surprisingly rich dynamics in a basic epidemiological
model, including sustained oscillations, multiple steady
states, and catastrophic collapses of endemic equilibria.
Disease is becoming increasingly recognized as a major
factor in conservation biology and population viability
analysis (Haydon et al. 2002; Lafferty and Gerber 2002;
Gerber et al. 2005). The Serengeti disease outbreaks of
rabies and canine distemper virus in wild carnivore pop-
ulations over the past 20 years raised the awareness that
pathogens are of acute importance for small and endan-
gered species (Cleaveland et al. 2007). The impact of dis-
ease can be particularly devastating in populations with a
strong Allee effect, since any further reduction might tip
the population density below the critical threshold and
lead to extinction. Examples of species that suffer from
both disease and an Allee effect include the African wild
dog Lycaon pictus (Burrows et al. 1995; Courchamp et al.
2000) and the island fox Urocyon littoralis (Clifford et al.
2006; Angulo et al. 2007). Allee effects can be caused by
a number of mechanisms, for instance, difficulties in find-



ing mating partners at low population densities and in-
breeding (e.g., Allee 1938; Courchamp et al. 1999; Stephens
and Sutherland 1999; Stephens et al. 1999). It has also
been hypothesized that animal species that aggregate as a
consequence of the Allee effect (e.g., for social thermo-
regulation, antipredator vigilance, or predator dilution)
would be more prone to parasitism (Christe et al. 2006,
p- 599), since there is a positive relationship between host
social behavior and parasite prevalence, intensity (number
of parasites within a host), and diversity (e.g., Moller et
al. 1993; Altizer et al. 2003).

Although small populations are the most commonly
cited reason for disease-induced extinctions (de Castro and
Bolker 2005), the joint interplay of infection and Allee
effects has been addressed only recently in theoretical
models (partially also taking into account spatiotemporal
dynamics; see Hilker et al. 2005; Petrovskii et al. 2005).
Dobson and Poole (1998) do not explicitly incorporate an
Allee effect in the host population but modify the disease
transmission function to show that spatial aggregation in-
creases the likelihood of infection. Deredec and Cour-
champ (2006) and Hilker et al. (2007) demonstrate that
disease mortality increases the minimum viable population
density, below which the host becomes extinct. In a pre-
vious model with frequency-dependent transmission, the
latter authors find analytical conditions that lead to two
endemic states, one of which is always unstable, while the
other one is always stable. There also is a disease-induced
extinction state, in which the parasite drives the host pop-
ulation to extinction and which can be the only stable
equilibrium, thus breaking the bistability inherent in
strong Allee dynamics. Deredec and Courchamp (2006)
report that the host size depression due to disease is larger
in a model with Allee effect rather than with logistic pop-
ulation growth. Furthermore, populations with Allee effect
are better protected against parasite invasion. They claim
that their analysis is “mostly applicable” (Deredec and
Courchamp 2006, p. 676) to a number of models consid-
ering both frequency- and density-dependent transmis-
sion. In this article, however, we show that more com-
plicated dynamical regimes are possible if transmission is
density dependent.

The organization of this article is as follows. First, we
describe the mathematical model and its underlying as-
sumptions. Although we have mostly epizootiological
problems in mind, we will use epidemiological terminol-
ogy throughout this article because the model is very gen-
eral. It may be applied to infectious diseases and hosts
with similar characteristics. We then introduce several
threshold quantities, among them the basic and effective
reproductive ratio as well as the disease threshold (critical
host density for disease establishment). These allow us to
categorize the number of endemic (nontrivial) equilibria.
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We also give conditions for the stability of the (semi-)triv-
ial—that is, disease-free—equilibria. Next, we present nu-
merical bifurcation analyses. These reveal the stability
properties of the endemic equilibria and the appearance
as well as disappearance of periodic solutions. We illustrate
our findings in numerical simulations with parameter val-
ues, for which the circulation of the feline immunodefi-
ciency virus within populations of domestic cats (Felis ca-
tus) may be seen as an example. The following section is
devoted to an overview of the system dynamics in a two-
parameter diagram. It turns out that the dynamical be-
havior can be summarized mathematically by a Bogdanov-
Takens point. Finally, we provide conclusions of our
findings and discusses their potential limitations and
impacts.

Model Description and Assumptions
Model Structure

Let N = N(T) > 0 denote the host population density at
time T2 0. In the presence of an infectious disease, the
total population N = X + Y is split into a susceptible (X)
and an infected (Y) part. We assume that there is no re-
covery from disease. The transfer diagram of the model
considered is as follows:

J(b(N) (X+Y)

BXY

e %

J’m(N) X J'[m(N)ﬁu.] ¥

The transmission is assumed to be density dependent and
described by the mass action rate 3XY, with coefficient
B >0 (see McCallum et al. 2001). There is no vertical
transmission; that is, infecteds do not transmit the disease
to their offspring. Hence, infecteds reproduce into the sus-
ceptible class, and the per capita net growth function is
split into g(N) = b(N) — m(N), with b(N) > 0 being the
fertility function and m(IN) > 0 being the natural mortality
function. Infecteds suffer an additional disease-related
mortality, which is described by the virulence p > 0. The
model equations read

dx

— = — + —

0T BXY + b(N)N — m(N)X,
ay

— = BXY~— Y — pY.

1T B m(N)Y — p

We now specify the demographic functions and assume
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that a strong Allee effect is manifested by the following
per capita net growth rate:

g(N) = a(K, — N)(N— K.), @

with K, being the carrying capacity, K_ being the mini-
mum viable density of the disease-free population (Allee
threshold), and 0 < K_ < K, in most cases of ecological
interest. The parameter a > 0 adjusts the maximum per
capita growth rate; compare this with similar functional
forms in the studies of Lewis and Kareiva (1993), Gruntfest
et al. (1997), Amarasekare (1998), and Courchamp et al.
(1999). Function (1) can be obtained by assuming a den-
sity-dependent per capita mortality rate (analogously to
logistic growth) and a quadratic per capita fertility rate:

b(N) = a[-N*+ (K, + K_+ e)N+ ], )

m(N) = a(eN + K, K_ + ¢). (3)

Qualitatively similar fertility rates have been used by Hopf
and Hopf (1985) and Wang et al. (1999). They can be
traced back to Volterra (1938); see also Dennis (1989). The
present choice of demographic functions describes pop-
ulations with linearly increasing mortality, mate encoun-
ters based on bimolecular collisions (i.e., the number of
meetings between the two sexes is proportional to N?),
and a linearly decreasing offspring survival in crowded
habitats (see Boukal and Berec 2002). In order to guarantee
b(N) to be positive, we restrict our attention to the case
N< K, + K_+ e which is sufficient for our model be-
cause any initial population density below or close to the
carrying capacity will be bounded from above by K. Pa-
rameters e, ¢> 0 determine the effect of density depen-
dence and independence in the demographic functions,
respectively. They do not affect the intrinsic per capita
growth rate g(N).
Introducing the dimensionless quantities

N Y
P=—,1=—,t=aeK, T>0,
K, K,

K K_
r=—">0u=—e(0,1),d= >0,
e K, ek,
o=Lo0a=—t 50
ae aeK

we can write our model as

dpP
0" 1 — P)(P— u)P — o, @)
%=[—a—d—ru+(a—l)P—aI]I 5)

in the (B I) phase plane. Parameter P is the dimensionless
total population that is composed of infecteds (I) and
susceptibles (P — I). Note the convenient notation of the
cubic growth term for the total population in equation
(4). In the rest of this study, we shall focus on the eco-
logically interesting case in which the Allee threshold is
far from the carrying capacity, 0 < u < 1/2.

Exemplary Application: FIV in Domestic Cats

In order to illustrate the dynamics of model (4)—(5), we
will later employ parameter values taken from studies of
the feline immunodeficiency virus (FIV) circulating within
populations of domestic cats. Here we briefly describe this
system’s ecology and epidemiology. Although we are not
aware of any article addressing potential Allee effects in
cat populations, the domestic cat appears to be an inter-
esting study subject because of the great variety in its spa-
tial organization and social behavior. These are believed
to depend primarily on resource availability; see the review
by Liberg et al. (2000). When food resources are highly
clumped and abundant as in urban or village areas, female
cats form groups with densities reaching more than 2,000
individuals km ™ The primary reason for group formation
is to utilize and defend a large and stable food resource.
In rural and nonanthropized areas, where prey items are
patchily distributed and unpredictable, cats live solitarily
at very low densities (<10 cats km™?), and encounters
among adults are rare (Kerby and Macdonald 1988).
Feline immunodeficiency virus is a worldwide-occur-
ring pathogen of felids that induces AIDS in cats. On
infection, there is a long asymptomatic carrier phase,
which makes modeling FIV amenable to the simple SI
(susceptibles—infecteds) structure introduced above. Pre-
vious models (e.g., Courchamp et al. 1995; Hilker et al.
2007) assumed that the number of contacts between cats
is constant (giving rise to frequency-dependent transmis-
sion). While this appears reasonable in nonanthropized
and suburban areas, it has been suggested that contacts of
cats increase with density in rural and urban areas (Fro-
mont et al. 1998) when home ranges tend to overlap with
increasing population density. This is particularly true for
dominant males and group-living females (Liberg et al.
2000). (Note that a similar argument has been made for
rabies transmission in urban foxes [Smith and Harris
1991].) Feline immunodeficiency virus is transmitted by
biting when males fight for monopolizing estrous females



and defend territory as well as during mating (through
the bite at the neck during the mount). The number of
sexual partners is higher in urban areas (as a result of the
promiscuous mating system), and contacts in general are
frequent in high-density areas (Natoli and De Vito 1991).
This lends support for considering a density-dependent
transmission rate.

In the numerical simulations presented in this article,
we adopt parameter values from Courchamp et al. (1995)
and Hilker et al. (2007) as follows:

r=02,u=0.1d=025 o =0.1. ©)

Existing estimates for the frequency-dependent transmis-
sion coefficient oy cannot be directly related to the density-
dependent one, o. As a first approximation, we utilize that
the effective contact rate for density-dependent transmis-
sion is a linear function of population density. Given that
Courchamp et al. (1995) estimated oy, at endemic equi-
librium, we obtain o;; = oN", where N* is the population
density at endemic equilibrium. This suggests a (dimen-
sionless) value of 0 = 1.5. However, we will explore the
impact of the transmission coefficient by taking it as a
main bifurcation parameter.

Equilibria and Threshold Quantities:
Persistence and Extinction

We show that there can be up to three endemic stationary
states of model (4)—(5), plus three disease-free equilibria
that always exist. We identify meaningful threshold quan-
tities that give information about the number and location
of the nontrivial stationary states. Their stability will be
investigated numerically in “Bifurcation Analysis: Mul-
tistability and the (Dis-)Appearance of Oscillations.”

First, let us consider the disease-free system. The Allee
effect induces bistable dynamics, with the total population
density approaching either the extinction state (B, I,) =
(0, 0) or the carrying capacity (P, I,) = (1,0), depending
on whether the initial population density is larger or
smaller than the Allee threshold u. These equilibria are
separated by (B, I,) = (u, 0), which is always unstable.

Now, let us look for nontrivial equilibria describing en-
demic situations. They can be found as the intersections
of the nontrivial nullclines of model (4)—(5), which are a
cubic curve and a straight line, respectively. There can be
either 0, 1, 2, or 3 nontrivial stationary states, as illustrated
in figure 1. Detailed conditions for their existence are de-
rived in the appendix by simple graphical phase plane
analysis. Analytical solutions are too lengthy to present but
can be obtained with a computer algebra system.

The effective reproductive ratio R of an infectious dis-
ease can be defined as the number of secondary infections
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produced by a single infected during its entire infectious
period in a completely susceptible population P. In this
case (see eq. [5]),

oP

R=——7———. 7
a+d+ru+P @

The numerator is the number of secondary infections
(oP), and the denominator is the inverse of the average
infectious period that is determined by the disease-related
mortality (o) and the natural mortality (d + ru + P). If
0 < 1, Ris less than unity and the disease cannot establish.
Conversely, if 0> 1, the disease can be maintained in a
sufficiently large population with P> B,. The critical host
density B for disease establishment (henceforth referred
to as disease threshold) can be determined by setting
R =1 and solving for

a+d+ru
B=—7-—7-. (8)

o—1

Setting P = 1 in equation (7), since the population will
settle to its carrying capacity in the absence of disease (and
being above the Allee threshold), gives the basic repro-
ductive ratio

.o
at+d+ru+1’

0

We now can summarize the number of nontrivial equi-
libria as in table 1 with the help of three critical values
for the disease threshold E. Note that B. is the point at
which the linear infecteds nullcline crosses the horizontal
axis (see fig. 1). The first one is associated with the carrying
capacity of the host population. If B, > 1 (or, equivalently,
R, < 1), density-dependent constraints prevent the pop-
ulation from reaching the necessary density for disease
establishment. In this case, there are no nontrivial equi-
libria, and the system settles down to a disease-free state
as described above. Table 2 shows the stabilities of the
disease-free stationary states in the various threshold
ranges. If 0 < B, <1 (R, > 1), the disease can persist, and
the disease-free carrying capacity state (1, 0) in turn loses
stability.

The second and third thresholds can be attributed solely
to the Allee effect. Respectively, they are the Allee threshold
u itself and

(u+1)>

oWt ©

We will briefly refer to T, as the inflection threshold be-
cause beyond it the infecteds nullcline cannot intersect the
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Figure 1: Graphical phase plane analysis of model (4)—(5). Stationary states (circles) are determined by the intersections of the nullclines of infecteds
(black line) and total population (gray line). The thin line is the tangent in the cubic’s inflection point crossing the horizontal axis at the inflection
threshold T,. The dashed lines are the infecteds’ nullclines emanating from the disease threshold P, that are tangent to the concave and convex
branches of the cubic, respectively. Their respective slopes are s, ands_. A shows a unique endemic equilibrium if T, < P, < 1. B illustrates a scenario
with three endemic equilibria if u < P, < T, ands_ < s<'s,. Cand D indicate the occurrence of two and no endemic equilibria, respectively, depending

on the slope s of the straight nullcline, if P, < u.

cubic host nullcline more than once (see fig. 1A). Param-
eter T, is the point at which the tangent line to the cubic
nullcline, emanating from its inflection point, crosses the
horizontal axis. Note that T, is always larger than the Allee
threshold in the parameter ranges considered (i.e., T, >
ufor0<u<1/2).

If the disease threshold B, > T,, there consequently is a
unique endemic equilibrium (fig. 1A). However, for a
smaller threshold density T, > B, > u, there can be up to
three endemic equilibria. This depends on the slope of the
infecteds’” nullcline, which is given by s: = (0 — 1)/o and

depends solely on the transmissibility. Let s_ and s, be
the slopes of the two dashed lines in figure 1B, with
s_ < s,.If slies in between these two slopes, there are three
endemic equilibria. If, conversely, s < s_ or s> s, there is
only a unique endemic equilibrium with a small or large
total population density, respectively. In the case of equal-
ity, there are two endemic equilibria. The values of s_ and
s, are defined in the appendix; they can be obtained as
the respective slopes of the tangent lines to the concave
and convex branches of the cubic nullcline emanating
from B.



Table 1: Number of endemic equilibria in model (4)-(5)

P>1 1>P>T, T,>P.>u u>P.>0
s>, 0 1 1 0
s_.<s<s, 0 1 3 2
s<s_ 0 1 1 2

Note: P, disease threshold, equation (8); T,, inflection threshold, equa-
tion (9); u, Allee threshold; s = (0 — 1)/0, slope of the infecteds’ null-
cline; s.., slopes of the tangent lines to the host population’s cubic null-
cline (see appendix; 0 < u < 1/2 is assumed, for which T, > u).

Last, if B. < u, there can be up to two endemic equilibria
ifs<s, (fig. 1C). If s > s, there is no endemic equilibrium
at all (fig. 1D). Since the disease-free carrying capacity
state (1,0) can be invaded by the disease, it is unstable,
and the only attractor left is the trivial state. Hence, mi-
croparasites with a disease threshold smaller than the Allee
threshold can drive their host population to extinction.
This was not known in density-dependent disease trans-
mission models before (e.g., Zhou and Hethcote 1994; de
Castro and Bolker 2005). Passing the Allee threshold
B. = umeans that one of the endemic states—namely, the
one with small population size if it existed—leaves the
positive quadrant and becomes biologically unfeasible.
Therefore, the number of endemic equilibria reduces from
1to 0 or from 3 to 2 if s>s_. If s<s_, on the contrary,
there existed only a unique endemic equilibrium with large
population size for B, > u, which is safe from leaving the
positive quadrant. For B, < u, the disease threshold is small
enough to allow the establishment of an additional en-
demic equilibrium; that is, the number of endemic equi-
libria increases from 1 to 2.

The threshold B, < 1 has been described by Anderson
and May (1981, p. 474) for host populations with a car-
rying capacity. A threshold similar to B, < u has been found
by Hilker et al. (2005, 2007) and Deredec and Courchamp
(2006). The inflection threshold B, = T, (as well as the
occurrence of three endemic equilibria) has, to our knowl-
edge, not been reported before. Note that T, depends only
on the Allee threshold u and is determined by the inflection
point of the cubic host’s nullcline. The threshold values
s, for the slopes of the infecteds’ nullcline are influenced
by both demographic and epidemiological parameters (see
appendix).
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Bifurcation Analysis: Multistability and the
(Dis-)Appearance of Oscillations

In “Equilibria and Threshold Quantities: Persistence and
Extinction,” we obtained information about the number
of endemic equilibria and their qualitative location. Here,
we investigate them quantitatively by numerical contin-
uation and simulations, with a particular focus on their
stability and cyclical behavior. As a baseline scenario, we
employ the FIV parameter set (6). We already know that
a necessary condition for disease spread is that transmis-
sibility 0 > 1 (“Equilibria and Threshold Quantities: Per-
sistence and Extinction”). In what follows, we will explore
the impact of the transmissibility by taking it as a main
bifurcation parameter. Note that for all other parameters
taken from the baseline scenario (eq. [6]), we have s>
s,. Later, we will also vary the virulence to allow s, >
s>s and s<s_.

Figure 2 shows how the densities of infecteds and the
total population vary with increasing transmissibility. For
small values of o (R, < 1, equivalently B, > 1), the disease
cannot establish (I = 0), and the host population either
reaches the carrying capacity (P = 1) or becomes extinct
(P = 0), depending on the initial condition being larger
or smaller than P = u. This corresponds to the case
B.>1 in tables 1 and 2. For ¢ > 1.37, the disease crosses
the endemic threshold condition R, = 1 and persists. The
emerging endemic equilibrium is stable, whereas the dis-
ease-free carrying capacity (1, 0) becomes unstable. Figure
3A shows the resulting dynamics in phase plane and time
plots. The total population density is depressed as a con-
sequence of the additional disease-related mortality. The
number of infecteds reaches a maximum for an inter-
mediate transmissibility (o0 = 2.4). Thereafter, both I and
P are reduced severely. This happens when the I nullcline
passes the hump of the cubic P nullcline (see fig. 3A).

For high values of g, the dynamics undergo three sub-
stantial changes. First, the endemic equilibrium becomes
unstable at ¢ = 4.07. Both the total population as well as
the infecteds start oscillating in forms of stable limit cycles
(illustrated in fig. 3B). Mathematically, this corresponds
to a Hopf bifurcation scenario (H in fig. 2). The amplitudes
of the oscillations are initially small but then grow quickly
with increasing o.

Second, the oscillations disappear at o = 4.16. This is

Table 2: Stability of disease-free equilibria in model (4)—(5)

P.>1 1>P.>T, T,>P.>u u>P.>0
(0,0) Stable node Stable node Stable node Stable node
(u,0)  Saddle Saddle Saddle Unstable node
(1,0) Stable node Unstable node Unstable node Unstable node

Note: See table 1 for definitions.
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because the increasing limit cycle collides with the equi-
librium (u, 0) corresponding to the Allee threshold (see
fig. 3B, 3C), which is called a homoclinic bifurcation (HL
in fig. 2). Beyond this bifurcation, the unstable endemic
equilibrium still persists, but the limit cycle has disap-
peared. Consequently, there is no endemic attractor any-
more. Since the carrying capacity state (1, 0) is unstable,
both the disease and the host population eventually be-
come extinct. However, there can be a significant transient
time of fluctuations before the population finally collapses
(fig. 3C). The loss of the limit cycle also implies the loss
of bistability. Note that this fundamental change occurs
all of a sudden. A potentially tiny increase in ¢ (maybe
due to random noise) might induce a catastrophic and
nongradual collapse of the endemic persistence.

Third, also the unstable endemic equilibrium disappears
for 0 >4.7. This occurs when the total population falls
below the Allee threshold as a consequence of disease mor-
tality. It corresponds to the case B, < u, s> s, in tables 1
and 2 and is illustrated in figure 1D. Note that this disease-
induced extinction scenario is different from the extinction
dynamics after the disappearance of the limit cycle, because
there are no transient fluctuations.

We now fix a different value for the virulence, o =
0.066. In dimensional units, this corresponds to an infec-
tion length of 7.6 years rather than 5 years, as in the first
part of this section. This is well within the range of 2-10
years reported for FIV (Courchamp et al. 1995). Note that
with this virulence value, the slope s of the infecteds’ null-
cline will undergo different scenarios with increasing o, at
first s<s_, then s_ < s<s,, and finally s> s, (not shown
here).

Figure 4A shows the bifurcation diagram for the in-
fecteds; the one for the total population is qualitatively
similar and therefore omitted for the sake of brevity. Again,
the disease establishes in the population for R, > 1 in an
initially unique endemic equilibrium. However, for higher
values of o, there appear two more bifurcations than in
the previous part of this section. The first one occurs at
0 = 3.53 when the inflection threshold T, > B. is passed.
It indicates the existence of three endemic equilibria and
coincides with the transition froms<s_tos_ <s<s, (see
tables 1, 2).

The two additional equilibria emerge in a saddle-node
bifurcation (SN in fig. 4A). The medium branch is always
unstable (the saddle point), while the lower branch initially
is locally stable (the node). A portrait of the dynamics in

phase plane and time is given in figure 4B. Note that the
dynamics are tristable: depending on the starting point,
the system approaches either one of the two stable endemic
points or the extinction state.

The equilibrium with small population density under-
goes the same changes in qualitative dynamics as the
unique endemic equilibrium described in the first part.
That is, it loses stability in a Hopf bifurcation at o =
4.03 and gives rise to stable oscillations (fig. 4C). The limit
cycle disappears in a homoclinic bifurcation at o = 4.07.
Now, the system is bistable and approaches either the en-
demic equilibrium with large population density or the
extinction state (fig. 4D). However, also the remaining
endemic equilibrium with large population density dis-
appears—namely, in the second saddle-node bifurcation
at o = 4.24—when it coalesces with the equilibrium of
medium population density. This corresponds to the tran-
sition from s_ < s< s, to s> s,. From then on, the system
is monostable with ultimate host population extinction
(fig. 4E).

Two-Parameter Bifurcations: How the Dynamics
Depend on the Epidemiological Setting

The results from “Bifurcation Analysis: Multistability and
the (Dis-)Appearance of Oscillations” reveal that the dy-
namics of model (4)—(5) change profoundly not only when
varying the transmissibility o but also for different values
of the virulence o. We now vary « continuously as well
and study the bifurcation behavior more closely in the
plane (0, o) determined by the two epidemiological
parameters.

The result is shown in figure 5. The hatched area marks
the parameter region with tristable dynamics. It is delin-
eated by solid lines describing saddle-node bifurcations
and a dot-dashed line describing a homoclinic bifurcation.
Tristability occurs for intermediate values of both trans-
missibility and virulence. In between the solid saddle-node
bifurcation lines, there are three endemic equilibria. A
necessary condition is T,> B. > u, but the shape of this
area additionally depends on the slope s of the infecteds’
nullcline and s, (see tables 1, 2). The dotted line marks
the threshold P. < u and thus indicates that the endemic
state with small population density disappears as a result
of increased disease burden. Note that the classification of
equilibria in tables 1 and 2 is reflected in figure 5, although

Figure 2: Bifurcation diagrams of model (4)—(5) for infecteds (A) and the total population (B). Solid lines indicate stable equilibria, dashed lines
indicate unstable equilibria. Circles indicate the maximum and minimum amplitudes of limit cycle oscillations. The extinction state (0, 0) is always
stable and not shown here. H and HL indicate Hopf and homoclinic bifurcations, respectively. Parameter values as in equation (6).
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the case B.> 1 is not shown here and the division is nat-
urally nonlinear.

Population and disease oscillate in the parameter region
between the Hopf and homoclinic bifurcation (i.e., in the
hatched area with decreasing stripes). Limit cycles occur
in the tristable as well as the bistable region. They appear
for intermediate transmissibilities and for a large enough
virulence. On the right-hand side from the homoclinic
bifurcation line, the periodic attractor has disappeared.
The dynamics become bistable when it was tristable before
or monostable when it was bistable before. Note that the
monostable region corresponds to host population
extinction.

The one-parameter bifurcation diagrams in figures 2
and 4A can be retrieved when fixing o at 0.1 and 0.066,
respectively, and passing horizontally through figure 5. The
stars and arrows indicate the location in parameter plane
of the exemplary phase plane and time plots in previous
figures.

There are two special bifurcation points. The first one
is the cusp point (Kuznetsov 2004). It is located where the
two saddle-node bifurcation lines meet in a cusp-shaped
manner. Inside the cusp, there are three endemic states,
forming a mirrored S-shape in the one-parameter bifur-
cation diagram in figure 4A. These S-shapes become more
narrow toward the cusp point, where they altogether dis-
appear and only one endemic state is left (cusp
catastrophe).

The second special bifurcation point is the Bogdanov-
Takens point (Kuznetsov 2004), which is located where
the Hopf curve tangentially touches one of the saddle-
node lines. This is also where the homoclinic curve arises.
The dynamics around a Bogdanov-Takens point are highly
degenerated and sensitive as a result of the saddle-node,
Hopf, and homoclinic bifurcations that occur simulta-
neously. Moreover, this happens when the endemic state
is in close proximity to the equilibrium (1, 0) correspond-
ing to the Allee threshold (dotted line).

Conclusions and Discussion

The mutual impacts of a strong Allee effect and micro-
parasites can induce rather complex population and dis-
ease transmission dynamics. The behavior observed in-
cludes sustained oscillations, multiple alternative stable
stationary states, and homoclinic loops with eventual host
extinction. Similar models with simpler demographics
such as logistic growth do not exhibit these phenomena
(e.g., Anderson and May 1991; Zhou and Hethcote 1994).
They can therefore be attributed to the Allee effect. Threats
by infectious diseases are pervasive for endangered species
and natural as well as managed populations (Dobson and
May 1986; Scott 1988; McCallum and Dobson 1995;

Woodroffe 1999). The results obtained here can therefore
be of significant interest, also when species reintroduction,
translocation, or the biological control of pest or invasive
species are considered.

Multistability, R,, and Control Actions

We derived several threshold quantities for disease persis-
tence, extinction, and the possibility of multiple stable
steady states. These numbers, obtained from a simple
graphical nullcline analysis, can be related to the disease
threshold B, (sometimes also referred to as critical com-
munity density). In particular, we found a new threshold
T, that can give rise to tristability and is determined solely
by the Allee threshold u. Sufficient conditions for the co-
existence of three endemic equilibria are T, > B, > u and
s, >s>s_. Tristability implies that there are two endemic
attractors (the third attractor is the extinction state) that
correspond to different levels of disease burden, that is,
number of infecteds and degree of population depression.
Multiple attractors can be of great importance in areas of
resource management, biological invasions, and biological
control. Small perturbations of the system’s state variables
or parameters—for example, by noise or trends—can in-
duce rapid and nonlinear responses, which correspond to
regime shifts over short timescales (see Scheffer et al.
2001). Hence, a population in an outbreak situation with
a high level of infection, for instance, could move quickly
to extinction or a low infection level.

While disease control often focuses on trying to reduce
the basic reproductive ratio R, (e.g., by vaccination or
quarantine), this article suggests consideration of man-
agement measures directly perturbing the density of the
total population or infecteds (e.g., selective culling). The
phase plane is very “fragile” and sensitive to manipulations
of the state variables. The system might readily leave its
current basin of attraction and evolve to a new state (see
the phase plane diagrams in figs. 3, 4). If knowledge of
an emerging infectious disease or management possibilities
are limited (no vaccine or treatment), removal of infected
individuals appears to be one of the few remaining options
(as discussed for the Tasmanian devil facial tumor disease;
McCallum and Jones 2006). A widespread culling, how-
ever, needs careful monitoring, since the reduction in host
population density might change the social behavior and
transmission dynamics, potentially leading to negative ef-
fects, as reported for the European badger Meles meles in
Britain, which is a reservoir for bovine tuberculosis
(McDonald et al. 2008).

Management strategies need to be very carefully devised,
because any action affecting the death or removal rate of
infecteds (i.e., effectively o) can dramatically change the
number of endemic equilibria. That is, well-intended con-
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Figure 3: Phase plane diagrams (left) and time plots (right) for systems with a unique stationary state (A; ¢ = 2.0), sustained limit cycle oscillations
(B; 0 = 4.08), and an unstable endemic equilibrium after the homoclinic bifurcation, leading to the limit cycle disappearance and eventual host
population extinction (C; ¢ = 4.2). Black circles indicate stable stationary states, gray circles indicate unstable stationary states. The nullclines for
the total population and the infecteds are indicated by gray and black lines, respectively. Exemplary trajectories are indicated by thin lines. In the
time plots (right), the total population is indicate by gray lines and the infecteds by black lines. Other parameters as in equation (6).

trol programs could suddenly induce the emergence of
additional endemic states or the collapse of existing dy-
namical regimes.

Bistability in epidemic models has achieved increased
interest in recent years because it has been noted that the
basic reproductive ratio cannot always be used as an in-

dicator for disease eradication anymore (e.g., Hadeler and
van den Driessche 1997; Roberts 2007). In these models,
the disease can persist even though R, has been reduced
below unity (R, < 1). In our model, bi- and tristability
occur for R, > 1 (see figs. 2, 4A). Disease control appears
possible even in parameter regions far beyond R, > 1 (by
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perturbations toward the low-impact state). Management
actions can thus be effective in a much wider range than
previously thought.

Disease Cycles

Identifying mechanisms that lead to periodic oscillations
are of particular interest, since they might answer the ques-
tion whether an epidemic either fades out or breaks out
again. There has been a long quest for simple epidemio-
logical models that generate oscillations (for a review, see
Hethcote and Levin 1989). Some examples of the mech-

anisms identified are seasonal forcing (Hethcote 1973;
London and Yorke 1973), a fixed period of temporary
immunity (Hethcote et al. 1981), highly nonlinear inci-
dence rates (Liu et al. 1986; Diekmann and Kretzschmar
1991), quarantine (Feng and Thieme 2000), and latency
periods (Anderson et al. 1981; Swart 1989; Pugliese 1990;
Roberts and Jowett 1996). We have identified a new one
that induces sustained oscillations in a simple SI model
and that can be traced back to the Allee effect.

The cycles in our model are generated by the interplay
of disease-induced mortality, host population depensation,
and density dependence in disease transmission. The os-
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cillations typically occur for small population densities (see
figs. 3B, 4C) when the case fatalities due to infection exceed
host population growth. The shrinking population density
effects a decrease in the contact rate between individuals,
hence disease transmission ceases. The host population can
recover, but the Allee effect induces a delay in its growth
since reproduction is depressed at smaller population den-
sities. In all this time, the number of infecteds has been
decreasing and can increase again only if the population
has passed the disease threshold. The same model with
frequency-dependent transmission does not show sus-
tained oscillations (Hilker et al. 2007) because disease
transmission would be ongoing at small population den-
sities, thus driving the population eventually to extinction
rather than allowing it to recover and to start cycling.
The oscillation amplitudes observed in most numerical
simulations are rather small. Only when the system is in
a parameter regime close to the homoclinic loop, the am-
plitudes—as well as the cycles’ period lengths—extend sig-
nificantly. In this scenario, the infecteds periodically ap-
proach very small densities, so that we expect the disease
to fade out as a result of stochastic effects. The host pop-
ulation then recovers and will be susceptible again for
disease invasion if R, = 1 is passed. There is some evi-
dence—on the basis of modeling, historic, and anecdotal
information—suggesting that the Tasmanian devil expe-
rienced three cycles of catastrophic population crashes as
a result of diseases and subsequent recoveries over a long
timescale of 2 centuries (see Bradshaw and Brook 2005).

Disease-Induced Extinction

Density-dependent transmission was believed not to lead
to host extinction, since disease transmission vanishes with
disappearing population density (Anderson and May 1991;
Zhou and Hethcote 1994; de Castro and Bolker 2005).
However, in populations with a strong Allee effect, it is
sufficient that the parasite depresses its host below a critical
value (that is larger than the mere Allee threshold, since
it additionally accounts for disease-related deaths). This
can occur not only when the corresponding threshold
B. < u is passed but also when the periodic attractor dis-
appears as it comes too close to the Allee threshold (for
large transmission coefficients and virulences, see fig. 5).

The idea of a synergetic interplay of Allee effects and
disease-induced mortality in reducing host population
growth was described before (Lafferty and Gerber 2002;
Deredec and Courchamp 2006; Hilker et al. 2007). How-
ever, in the case of density-dependent transmission, the
literature still assumes that it takes at least two alternative
hosts for a parasite to drive one of its hosts to extinction
(e.g., Holt and Pickering 1985). The results presented here
are, to our knowledge, the first to explicitly demonstrate

that host-specific parasites with density-dependent trans-
mission and no alternative reservoir host can be fatal, too.

Bifurcation Scenario

The complex dynamical behavior observed in this model
can be associated with the Bogdanov-Takens point. The
existence of such a bifurcation point implies the occur-
rence of Hopf, homoclinic, and saddle-node bifurcations.
The respective biological consequences are the following:
disease cycles, population extinction with long transients,
and alternatively stable states. Similar bifurcation scenarios
have been observed before in some epidemic models that
assumed nonlinear incidence rates (e.g., van den Driessche
and Watmough 2003; Alexander and Moghadas 2004) or
constant removal rates of infecteds (Wang and Ruan 2004).
Van den Driessche and Watmough (2003) describe how
the collapse of limit cycles in a homoclinic bifurcation can
lead to a catastrophic increase in disease incidence. In our
model, a homoclinic bifurcation destabilizes the attractor
corresponding to small population densities. Hence, the
system eventually approaches host population extinction
or an endemic equilibrium with large population density
(see fig. 5).

Robustness and Prospects

We would like to stress that our model is very general and
based on fairly simple assumptions. It could be applied or
extended to host populations and diseases with similar
demographic and epidemiological structures. The numer-
ical simulations shown in this article are based on param-
eter values obtained for FIV transmission dynamics among
domestic cats. Estimates for ¢ and o (Courchamp et al.
1995) suggest a unique and stable endemic equilibrium
with a prevalence of 7.2% and a host depression of 4.4%.
Although this appears to be in good agreement with data
(Courchamp and Pontier 1994), a more refined model for
this particular disease would have to take more details into
account. The main conclusion to be drawn, however, is
that both population and disease dynamics might be very
sensitive to parameter perturbations if a strong Allee effect
would be present. The consequences could be intensified
population depression, increased prevalence, cycling, or
extinction.

To check the robustness of the complex dynamics, we
have relaxed some model assumptions in numerical ex-
periments to additionally account for vertical transmission
and disease-reduced fertility. We could still observe limit
cycle oscillations and the existence of three endemic states.
The latter results from the change in convexity of the total
population’s nullcline at small to intermediate densities.
It is thus a consequence of the function describing host



population growth. A different, noncubic form of the host
growth function does not exhibit tristability (Thieme et
al., forthcoming) but also leads to periodic oscillations. As
discussed earlier, the inherent cycles are caused by an in-
terplay of density-dependent disease transmission, viru-
lence, and host growth depensation. This mechanism ap-
pears to be rather general, and we therefore expect
oscillations to occur also for various other host growth
functions.

The specific choice of per capita fertility rate (eq. [2])
arises from a mate shortage and crowding effects at all
densities. One can, however, imagine different scenarios,
for example, that fertility rates begin to decrease only un-
der high degrees of crowding. Such a situation would make
our model equations even more complicated. (Similarly,
more refined disease transmission functions replacing the
random mixing assumption inherent in the density-de-
pendent form would introduce additional complexity [see
Keeling 2005].) But even when the mechanistic assump-
tions of the present fertility rate do not hold, we expect
our model to be a good phenomenological description
since reproductive success is maximal at some interme-
diate density and then decreases with high population den-
sities. Note that fertility function (2) corresponds to one
of the simplest forms of an Allee effect (Edelstein-Keshet
1988). Parameters e and ¢ determine the density depen-
dence and independence, respectively, of both fertility and
mortality. However, they affect only the location of the
infecteds’ nullcline. Complex dynamics are possible if the
combination of e and ¢ is small in relative comparison to
the remaining parameters.

The inclusion of a strong Allee effect in epidemiological
models induces dynamics that are much more complicated
than previously thought. Endogenously induced periodic
oscillations are possible as well as the simultaneous co-
existence of multiple endemic equilibria. For large trans-
missibilities and/or large virulences, the most likely con-
sequence of the synergetic interplay between infectious
diseases and Allee effects is population extinction. Prob-
ably as a result of historic reasons, Allee effects have been
largely neglected in epidemiological modeling. However,
they are to be expected for many animal and plant species
(Berec et al. 2007; Courchamp et al. 2008; Molnar et al.
2008). The qualitative conclusions from this article can
therefore be helpful in assessing the impact of parasites in
populations subject to a strong Allee effects.
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APPENDIX
Existence of Endemic Equilibria: Phase Plane Analysis

We investigate the number of nontrivial stationary states
(endemic equilibria) and derive the conditions for their
existence. This will give us the threshold quantities iden-
tified in “Equilibria and Threshold Quantities: Persistence
and Extinction.” Our strategy is based solely on simple
graphical phase plane analysis making use of the nullclines
(zero-growth isoclines).

Endemic equilibria of model (4)—(5) are determined by
the intersections of the nontrivial nullclines of the total
population P and infecteds I. Respectively, they are given
by

Km:im—m@—m:;mm

a—d—ru o—1
+

I(P) = —

P = :n/(P).

Note that 7, is a cubic polynomial in P and #;, is a straight
line. The slope s: = (o — 1)/o of the straight line is de-
termined only by the transmissibility. If o < 1, the nullcline
is decreasing, and there will be no intersection with 7, in
the positive quadrant. We henceforth assume o > 1.

In what follows, we first fix the root B of the straight
line—that is, the intersection with the horizontal axis—
and then vary its slope to consider the number and lo-
cation of intersections (endemic equilibria). Illustrations
are shown in figure 1. The root B is the disease threshold,
as given in equation (8). It is positive for o> 1. We can
now distinguish the following four cases of the relative
locations of B, the Allee threshold u, the carrying capacity
1, and the inflection threshold T,. The latter is the root
of the tangent line through the cubic’s inflection point and
can be computed as in equation (9). We still assume
O<u<1/2 (ie, T,>u). When 1/2<u<1 (ie, T,< u),
a similar analysis yields at most two nontrivial stationary
states.

First, consider B, < u. Exemplary nullclines are sketched
in figure 1C and 1D. If the slope s of n, is smaller (larger)
than the slope s, of the tangent line to the cubic n, with
the same root B, then there will be two (0) endemic equi-
libria in the positive quadrant (see fig. 1C, 1D). The afore-
mentioned tangent line with root (P = B, I = 0) and
slope s, : = ny(P,) is defined by
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tB) = nyP,) + n;(R—)(PF —-P)=0,

where P, is implicitly given as a root of this cubic equation
and

n(P) = é[—apz +2(1 + WP — ul.

Comparing s, with the slope s of the straight nullcline,
we obtain the following: there is a unique endemic equi-
librium if s = s,, no endemic equilibrium if s> s, and
two endemic equilibria if s<s,.

Second, consider u < B, < T,, as sketched in figure 1B.
The straight nullcline can now be tangent to the cubic
nullcline 7, at two different locations in the positive quad-
rant: at P = P, to the concave branch with slope
s,: = nyP,) and at P = P_ to the convex branch with
slope s_: = np(P_). Comparing the slope of n; with the
slopes of these two tangential lines, we obtain the follow-
ing: there is (1) a unique endemic equilibrium (B, ),
with B<P"< T, if s>s,; (2) three endemic equilibria
(Bys Lus), with B<P'<T, P<P'<P, and T, <
P'<1if s.<s<s,; (3) a unique endemic equilibrium
(Pr, 1)), with T,< P* <1 if s<s_; and (4) two endemic
equilibria if s = s_ or s = s,, with one of them being a
saddle node.

Third, consider T, < B, < 1, as in figure 1A. Then there
is always a unique endemic equilibrium (P*,I*), with
B. < P* <1, independent of the slope s.

Fourth and last, consider B.> 1. Then there is no in-
tersection of n, and n, in the positive quadrant. Hence,
endemic equilibria do not exist.
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