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Infectious diseases are responsible for the extinction of a number of species. In conventional epidemic
models, the transition from endemic population persistence to extirpation takes place gradually. However,
if host demographics exhibits a strong Allee effect (AE) (population decline at low densities), extinction
can occur abruptly in a catastrophic population crash. This might explain why species suddenly disap-
pear even when they used to persist at high endemic population levels. Mathematically, the tipping point
towards population collapse is associated with a saddle-node bifurcation. The underlying mechanism is
the simultaneous population size depression and the increase of the extinction threshold due to parasite
pathogenicity and Allee effect. Since highly pathogenic parasites cause their own extinction but not that of
their host, there can be another saddle-node bifurcation with the re-emergence of two endemic equilibria.
The implications for control interventions are discussed, suggesting that effective management may be
possible for Ro > 1.
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1. Introduction

Parasites and pathogens are now recognized as integral parts of virtually all ecosystems [18,38,41].
There is a large body of evidence showing that disease agents can substantially affect their host
population [4,28,37]. Besides causing a depression in population size, infectious diseases have
also been attributed to playing a role in the extinction of species [13,14,30,50,54,60].
Transmission of disease is influenced by aggregation patterns in the host population as well as its
social organization and behavioural traits [19,23]. Two different types of incidence (new infections
per unit time) are usually distinguished [7,31,43]. Density-dependent (mass action) transmission
assumes that the effective contact rate between susceptible and infective individuals increases
linearly with population size. In contrast, the number of contacts is independent of population size
if transmission is frequency-dependent (also called standard incidence or proportionate mixing).
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Populations subject to density-dependent transmission have been regarded as relatively safe
from disease-induced extinction, as infection vanishes with declining population size — but see
[15,36,57] for other forces causing extinction at low density. Frequency-dependent incidences are
well known to have the capability of driving populations to extinction, see the review in [14]. This
is because disease transmission goes on even in small populations due to the constant contact rate.

Since the influential paper by Anderson and May [3] highlighting the role of parasites in regu-
lating natural populations, numerous mathematical models have been developed, which also take
the host population as a dynamic variable [5,8,10,27,39,48] rather than fixing it at a constant
level (as has been traditionally assumed for human disease models in developed countries). Epi-
demic models with frequency-dependent incidence typically predict host population extinction
in appropriate parameter regimes [11,24,25,61]. The extinction is preceded by a continuous pop-
ulation decline when the control parameters approach the eradication regime. The transition to
extinction, therefore, takes place gradually, and small population sizes are typical correlates of
imminent species loss.

This paper highlights that extinction can occur directly and abruptly in a catastrophic collapse
from high population levels if the host population exhibits a strong Allee effect (AE) (also called
critical depensation) [12,55]. The AE describes the phenomenon that populations benefit from
large population sizes (e.g. due to higher success rates in finding mating partners, predator dilution
or reductions in inbreeding). At low densities, populations experience positive density dependence
as they have difficulties in maintaining social functioning, for instance. If the AE is strong (weak),
the population growth rate is negative (reduced) at low densities. AEs have been demonstrated in,
or proposed for, an increasing number of species, e.g. saiga antelopes [45], polar bears [47] and
Atlantic cod [51].

Only recently, the impacts of an AE have been considered in epidemiological models. (Although
this paper is mainly motivated by animal diseases and therefore epizootiological problems, it uses
epidemiological notation throughout). Deredec and Courchamp [15] as well as Hilker et al. [34,
35] conclude that the combination of parasitism and AE generally increases the likelihood of
extinction. Thieme et al. [57] and Hilker et al. [36] consider density-dependent transmission
and show that host extinction is possible therein as well. Moreover, these models exhibit a rich
dynamical behaviour including super- and sub-critical Hopf bifurcations, homoclinic bifurcations
and tristability.

This article reconsiders a simple epidemiological model of S7 type with frequency-dependent
incidence and a strong AE in the host demographics [35]. While the original publication is primar-
ily concerned with spatio-temporal dynamics (additionally taking into account spatial diffusion),
the current focus is on the bifurcation behaviour of the spatially homogeneous model without
diffusion. A typical phenomenon in epidemic models with strong AE is bistability, i.e. the out-
come (extinction or survival of the population) depends on the initial condition. A super-critical
number of infectives can eradicate the host even if its initial state is beyond the minimum viable
size defined in the disease-free system. This paper reports that a spontaneous population crash
to extinction is possible for all initial conditions. This takes place via a saddle-node bifurcation,
in which two endemic equilibria disappear. The loss of the endemic attractor renders the system
monostable with extinction as inevitable outcome.

The remainder of this paper is organized as follows. Section 2 briefly introduces the model and
derives basic reproduction numbers. They are used in Section 3 to summarize the equilibria
and their stability in biologically insightful terms. Section 4 presents a numerical continuation
and bifurcation study. The main emphasis is on how varying control parameters impacts the
persistence of the host population and the establishment of the disease. Section 5 highlights
the relevance for management actions and illustrates the differences to host populations without
the AE. Section 6 compares the bifurcation behaviour with a backward bifurcation (BB), pointing
out that the two scenarios are fundamentally different, even though both of them involve multiple
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non-trivial stationary states and saddle-node bifurcations. Finally, Section 7 presents the main
conclusions and discusses their implications for the understanding of extinction dynamics.

2. Model description

This section describes the epidemic compartment model with frequency-dependent disease trans-
mission and a strong AE in the host demographics [35]. It also introduces basic reproduction
numbers that will be used to express the existence and stability of stationary states in the following
section.

2.1. Model assumptions and equations

The model structure can be illustrated by the following transfer diagram

lb(N) N
s BSI/N s
RE [ imye 1

Note that all quantities are dimensionless. The total host population size N = N(¢) at time
t > 0 is assumed to consist of a susceptible (S) and an infective (I) part, N = S+ I. That
is, there is no recovery from the disease. Disease transmission is frequency-dependent with coef-
ficient B describing the effective contact rate, henceforth referred to as transmissibility. The
disease is pathogenic and induces an additional per capita mortality rate w in the infectives,
henceforth referred to as pathogenicity (sometimes also called virulence). The background mor-
tality is described by the density-dependent per capita death rate m(N). There is no vertical
transmission, i.e. the offspring of infectives is susceptible. The per capita birth rate b(N) is
density-dependent as well. The difference between birth and natural death rate is the net growth
rate g(N) = b(N) — m(N) of the population. In the absence of disease, the population dynam-
ics is described by dN/dt = g(N)N. In the presence of disease, it is convenient to formulate
the model in (N, i) state variables, where i = I /N is the prevalence of the disease (fraction of
population being infective). The model equations then read

dN

5 =8 = wilN, (1a)
t
"
d_; = [(B — )1 — i) — b(N)]i. (1b)

Following conventional lines, the strong Allee effect is modelled by a quadratic net growth rate
g(N) =r(1—=N)(N —u), (2a)

where r is the intrinsic growth rate, the carrying capacity is scaled to 1 and the Allee threshold
(sometimes also called Allee limit or minimum viable population size) isu, 0 < u < 1. The AE is
assumed to be concentrated in the birth rate (reflecting a mate shortage due to encounters based on
bimolecular collisions and crowding effects with linearly decreasing offspring survival; see [36]
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for more details). The death rate follows density-dependent regulation motivated by intraspecific
competition:

b(N)=r|:—N2+<l+u+%>N+§:|, (2b)

m(N)=d+ru+N. (2¢)

Parameter d determines the baseline levels of fecundity and mortality. Note that  does not affect
g(N)andthat b(N) is positive at least forall N < 1 + r(1 + u), which is larger than the carrying
capacity and therefore sufficient for the problem at hand.

2.2. Reproduction numbers

The basic reproduction number of the disease is the number of secondary cases produced by
a single infective during its entire lifetime when it is introduced into a completely susceptible
population (i.e. N = §). For models (1) and (2), this yields

B B

oN) = W)~ it d et N

)

Note that population size is variable and affects the basic reproduction number. The latter is, there-
fore, expressed as a function of N. If Ro(N) < 1, the disease cannot spread and will disappear.
If Ro(N) > 1, in contrast, the disease can initially multiply and spread. The basic reproduction
number thus is a pertinent quantity for parasite invasion.

If the host population is at carrying capacity, the disease can invade if

Ro = Ro(l) > 1.

It can be shown that the disease-free equilibrium at carrying capacity loses its stability under this
condition. Once the disease invades, it can either persist endemically or drive the host population
to extinction (see the next section).

If the host population goes extinct (N — 0), the fraction of infectives within the vanishing
population can be strictly positive or zero, depending on whether the infectives decay more
slowly or more quickly than the total population, respectively. The total population approximately
decays at rate ru if N is assumed to be small, whereas the infectives decay at an approximate rate
ru+d+ p— g if I is small compared with N. The difference between these two growth rates
at zero population density can be expressed in the quantity

__B
n+d’

i

which basically gives the number of secondary infections discounted by the fact that host pop-
ulation size vanishes [32,33,56]. If R; < 1, the infectives decay faster than the total population
with the prevalence approaching zero, whereas if R; > 1 the infectives remain a positive fraction
in the host population and the prevalence approaches a constant value.

3. Equilibriaand their stability

The existence and stability of stationary states of system (1) have been studied in [35] for
generalized demographic functions yielding a strong AE, that is for b(N) being concave and
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m(N) being non-decreasing and convex. This section briefly recalls these results, applied to the
demographic functions (2), and reformulates them in terms of reproduction numbers. This allows
for a novel, biologically more insightful interpretation, which forms the basis for understanding
the bifurcation behaviour investigated in Section 4.

Model (1) and (2) has the following four (semi-)trivial equilibria E = (N*, i*).

e Eq = (0,0): The trivial extinction state is a stable node if R; < 1 and an unstable node
otherwise:

e E, = (u,0): The Allee threshold state is a saddle point if Ro(x) < 1 and an unstable node
otherwise:;

e E; = (1,0): The carrying capacity state is a stable node if Ry < 1 and an unstable node
otherwise:

e E, =(0,i) withif = (B — n —d)/(B — ) The extinction state with positive prevalence in
the limit process state exists if R; > 1 and is always a stable node. Note that E; coincides with
Eq if expressed in (N, I) or (S, I) state variables.

A necessary condition for non-trivial equilibria is 8 > u; otherwise, i — 0 as t — oo, cf.
Equations (1b). Endemic equilibria can be found as the intersections of the two quadratic nullclines

8 . _1=b)
I B-w

Obviously, there can be up to two non-trivial stationary states E, _ = (N7 _,i% ). From [35] it
is known that E., is locally stable and that E_ is a saddle point, if they exist. Periodic solutions can
be ruled out. For the demographic functions (2), the endemic equilibria as well as their eigenvalues
can be solved explicitly, but are too cumbersome to be presented here. Instead, the remainder of
this section shall investigate the conditions under which the endemic equilibria exist, with the
goal to formulate them in terms of the basic reproduction number Ro.

Introducing the auxiliary function

4)

O(N) = (B—mw)(gWN) — p) + ub(N)

allows us to determine the total population size N* in endemic equilibrium as the root of a
quadratic equation. Note that N* € (u, 1); otherwise i* = g(N*)/u would be negative. ®(N) is
a parabola that is open at the bottom, and one has ® (1) < ®(1). Let Nmax be the population size
for which ®(N) is maximal. The following cases can be distinguished.

First, consider ®(1) > 0. If ®(u) > 0, there is no root of ®(N) in the interval of interest.
Endemic equilibria, therefore, do not exist. If, conversely, ® () < 0, there is a single root N*,
with u < N* < min {Nmax, 1}.

Second, consider ®(1) < 0, which implies ®(u) < 0. Then the number of roots depends on
the location of the parabola’s top ®(Nmax): (i) if ®(Nmax) > 0, there are two roots N* and
N with u < N* < Nmax < Ni < 1; (i) if ®(Nmax) = 0, the previous two roots collide in a
unique root N* = Npax; (iii) if @ (Nmax) < 0, there is no root. The critical relation ® (Nmax) > 0
for two endemic equilibria to exist can be solved explicitly in terms of model parameters (see
Appendix). Reformulating in terms of the basic reproduction number by substituting one of the
epidemiological parameters, one obtains that

Ro <R§ or Ro>RE, (5)

where R§t < R§2. These critical values can be expressed in terms of model parameters, cf. the
Appendix. If this is done by substituting transmissibility g, RS is always unfeasible, which is
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why the second relation in Equation (5) never exists in this case. . > 1 is required for R§' to

be feasible, with

r(1—u)?
YRR

c _

(6)

If Ro is expressed in terms of pathogenicity w, both critical values RS“Z are feasible provided
that 8 > B¢, where

A+ /A2 - 4B

> , A=14u+2d+rQ+u®, B=Wd+ru)d+d)+r2u? (7)

g =

The biological reason behind the existence of one or two critical values R is given in the

next section.

The above results can be summarized as follows in terms of the basic reproduction number,
using the relationships ®(1) =04 Ro =1 and ®(u) = 0 & Ro(u) = 1. Figure 1 shows a
corresponding sequence of phase plane illustrations.

First, if
d R
0§M+ +ru+u= 0 — R,
wut+d+ru+1l Ro(u)

1 1F 1t
| S R N
OHe— A — =e| O ‘."-': ~~~~~~~~~~~~~ o Ofi= vl {\ \\\\\ e
u 1 Ou 1 Ou 1

total population, N total population, N total population, N

(a) Ro < RU<R; < 1 (b) Ro < RER; > 1 (¢) RE<Ro<1

prevalence, i

/
/
;
J
J
I
i
!

\
\
\
\
\
A
\

2,

total population, N

total population, N

L1
Ou
total population, N

1

(d) 1 <Ry < RE (e) RE! < Ro < REZ (f) Ro > RE2

Figure 1. Phase plane illustrations with nullclines and stationary states of model (1) and (2). Solid (dashed) lines
are the nullclines of infectives (total populations). Black (grey) points mark stable (unstable) equilibria. If the sys-
tem is bistable (all panels except [€e]), the stable manifolds of the saddle point separating the basins of attraction are
shown in dotted lines. Parameter values: (a) © = 3.9, (b)) © =3.65, (C) u =3, (d) u =2.4, (&) n =2, (f) x = 0.5 and
B=4u=01r=2,d=0.2
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there is no non-trivial equilibrium. This condition simply states that Ro(x) < 1, i.e. the disease
cannot persist in a population that is at the edge of extinction due to the Allee effect. The sys-
tem is bistable and approaches either the carrying capacity state or one of the extinction states
(Figure 1a, 1b).

Second, there is a unique endemic equilibrium E_ = (N*,i*) if Rj < Ro < 1. E_ is always
an unstable saddle point. It organizes the effective extinction threshold in the presence of disease.
That is, depending on the initial condition the population either goes extinct or survives at carrying
capacity. The basins of attraction are separated by the stable manifolds plotted in dotted line in
Figure 1c. Host eradication is even possible if the initial population size is larger than the Allee
threshold. The disease, therefore, increases the extinction basin beyond u.

Third, consider Ry > 1. If R < Rgl or Ro > RE, provided that these critical values exist,
there are two non-trivial stationary states (Figure 1d, 1f). The additional equilibrium is E, =
(N7, i}) is always locally stable and has a larger population size N}, N* < N} < 1. The system
remains bistable with either endemicity or host extinction as the eventual outcome. Conversely,
if RSL < Ro < RE?, there is no non-trivial stationary state at all (Figure 1e). This occurs after
the two endemic equilibria E, and E_ coalesce and disappear at one of the critical values. It
corresponds to too strong a disease, reducing population size N} and at the same time increasing
the effective extinction threshold. As a consequence, neither the disease nor the host can persist,
and the system is rendered monostable.

4. Bifurcation behaviour

The bifurcation diagrams in Figure 2 show how the total population and prevalence change with
varying basic reproduction number Ry. It is assumed that Ry is varied by altering transmissi-
bility 8. If Ry < 1, the infection cannot invade the population at carrying capacity. However,
if Ro > 1, the disease-free equilibrium E; loses stability, and the locally stable endemic
equilibrium E, emerges in a transcritical bifurcation. It coexists with the unstable endemic equi-
librium E_, which already arises if Ro > R{. The two non-trivial states collide and annihilate
each other in a saddle-node bifurcation at Ry = Rgl. The endemic solutions are suddenly lost,
and the system abruptly undergoes a transition to a qualitatively very different behaviour. Namely,
the population always goes extinct, whereas the population size N} in endemic equilibrium was
bounded well away from zero.

The critical basic reproduction number RS is a tipping point, marking the unexpected popu-
lation collapse. For R > R, the dynamics, therefore, becomes monostable with the extinction
state E; being globally stable. For Ry < R§!, the system is bistable: one of the attractors always
is an extinction state — either Eq or E; depending on R; < 1 — while the other attractor is either
E, or E corresponding to a disease-free or endemic scenario (Ro < 1), respectively.

The basic reproduction number can not only be altered by controlling transmissibility 8, but
also by varying pathogenicity u —the other disease-related parameter. Note that an increase in R
corresponds to a decrease in w, cf. Equation (3). Figure 3 shows the corresponding bifurcation
diagram of the total host population. (The diagram for the prevalence is not shown but is quali-
tatively similar.) The first part of the bifurcation diagram is analogous to the one in Figure 2 for
changing 8. In particular, there is a saddle-node bifurcation for Ry = Rgl, after which the popu-
lation goes extinct. However, there is another critical reproduction number R, RS > RS, for
which a second saddle-node bifurcation occurs. This gives rise to two endemic equilibria again.
As abruptly as the endemic attractor disappears at Ro = RS, it re-emerges after the extinction
regime at Ro = R Note that the phase-plane diagrams in Figure 1 correspond to a sequence of
decreasing p.
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Figure 2. Bifurcation diagrams for varying basic reproduction number (by increasing 8). Solid (dashed) lines correspond
to stable (unstable) equilibria. The arrow indicates the abrupt population collapse from a level of a large population size N
after a saddle-node (SN) bifurcation. The critical values of R are explained in the main text. Other parameter values:
n=1Lu=01r=2d=0.2

Itis well known [2,3] that the maximum degree of host population depression (here resulting in
extinction) is achieved by parasites with moderate to low pathogenicity, i.e. moderate to high Ro.
If pathogenicity is too low (i.e. too large a Ry), the disease cannot cause sufficient case fatalities,
enabling the host to persist at endemic equilibrium with large population size (Ro > 7232). Con-
versely, if pathogenicity is too high (i.e. too small a Ry), increased mortality of infectives limits
their potential to spread the disease (1 < Ro < RE') or even leads to their eradication (Ro < 1).

The sequence of ‘endemicity — extinction — endemicity’ can be observed in other models with
frequency-dependent transmission as well. The novelty in a model with strong AE, however, is
that the transition between the regimes takes place via two saddle-node bifurcations. This results
in a much more drastic change of behaviour. The transitions in models without AE are induced
by transcritical bifurcations, which correspond to a more continuous and smooth evolution.

Figure 4 summarizes the model behaviour in the two-parameter plane (u, 8). The dynam-
ical outcome can, therefore, be characterized in terms of the disease-related parameters. The
saddle-node bifurcation conditions define a nonlinear relationship between g and ., whereas
the other critical values of the basic reproduction number define a linear relationship. Fixing a
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Figure 3. Ifthe basic reproduction number is varied by changing pathogenicity, the bifurcation diagram reveals a second
saddle-node bifurcation (SN3). Parameter values: 8 = 4,u =0.1,r =2,d = 0.2.

transmissibility, B
wv

£, £

0 ‘05 1 15 2 25 3 35 1
pathogenicity, 1

Figure 4. Domains of model behaviour in the two-parameter plane. Stable equilibria in each domain are indicated. The

grey domain is monostable with eventual host extinction. All other domains are bistable. The hatched domain can be

endemic, while the remaining white domains can be disease-free. Host extinction is always possible. Bold (thin) lines are

saddle-node (transcritical) bifurcation curves. The dotted line marks the emergence of the unstable endemic equilibrium

E_. See the main text for more details. Parameter values: u = 0.1,r = 2,d = 0.2.

pathogenicity w and traversing vertically through Figure 4 by varying g reveals that the saddle-
node bifurcation line can be crossed at most once. Note the minimum value of pathogenicity u°
for saddle-node bifurcations to occur, cf. Equation (6). Similarly, if transmissibility g is fixed and
Figure 4 traversed horizontally by changing w, there is a minimum value of transmissibility 8¢
as well, cf. Equation (7). The saddle-node bifurcation line can be crossed twice. Mathematically,
this can be understood by noting that both nullclines depend on w, whereas only one nullcline
depends on g, cf. Equation (4).

The Allee threshold u (as well as the intrinsic growth rate ») appears in both nulliclines, thus
also defining two critical tipping points for saddle-node bifurcations. It can be shown that there
exists a minimum value of u, for which the ‘double-tipping’ can occur. That is, the AE needs to be
sufficiently severe. However, there are also examples, in which a “‘double-tipping’ always exists
(i.e. including u — 0).
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5. Consequencesto control interventions and comparison with logistic demographics

The aim of this section is threefold: first, to illustrate the implications of the abrupt host
population extinction after a saddle-node bifurcation; second, to show that decreasing Ro can
be disadvantageous; and third, to showcase the difference to populations without AE.

@) ' ' ' '
1 — Rg=05_|
|\

Z gl

c 084 i

S I

I

S o6 B

a

9]

a

T o4

8

54
o

total population, N
o
()}

54
o

total population, N
o
()}

0 20 40 50 80 100
time, t

Figure 5. Time evolutions for varied basic reproduction numbers. (a), gradual transition from population persistence
to extinction in the logistic model (8), (b) abrupt population collapse in the Allee effect model (2) when increasing Ro
(by increasing 8), (c) decreasing Ro (by varying 1) can lead to a population crash as well. Basic reproduction num-
bers are varied in equidistant steps. Initial conditions are fixed at N(t =0) = 1,i(+ = 0) = 0.01. Parameter values:
w=1 B=1 M =0.1in the logistic model, « = 0.1, = 2,d = 0.2 in the Allee effect models with x = 1 (b) and
B =4(c).
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System (1) does not exhibit a saddle-node bifurcation if demographics are logistic, e.g.
b(N) =B >0, (8a)
m(N) =M+ (B—- M)N, (8b)

with B — M > 0 being the intrinsic per capita growth rate. There is at most one endemic equilib-
rium, which emerges if Rg = 8/( + B) > 1 and disappears again if Rq is increased to such a
value that the disease drives the host extinct, see e.g. [61]. Figure 5a shows various time series
for different values of the logistic basic reproduction number. Clearly, the population depression
to extinction takes place in a continuous manner.

Ina population with strong AE, disease-induced extinction occurs abruptly when increasing Ro,
cf. Figure 5b. Host populations with substantial size (for Ry < RS) can disappear all of a sudden
if the basic reproduction number is increased just a tiny bit (R > RSL).

Figure 5c considers the case when control measures aim at reducing Ry by increasing
pathogenicity. The time plots look similar to the ones in Figure 5b. However, the order of reproduc-
tion numbers is reversed. The starting point is an endemic infection with only moderate population
depression (Ro = 2.2). Decreasing R reduces host population size — initially only marginally,
but once the tipping point RS? induced by the second saddle-node bifurcation is passed, the
population quickly goes extinct. Interventions aimed at altering the basic reproduction number,
therefore, need to be planned carefully. Merely reducing R, is not always beneficial.

6. Differencesto backward bifurcations

In recent years, backward bifurcations (BBs) in epidemic models have received considerable
attention in the literature, see e.g. [6,17,21,29,40,42,46,52,53,59]. It is interesting to contrast the
bifurcation behaviour of the AE model presented here with a BB, see Figure 6aand 6b, respectively.
The discussion in this section is restricted to the case in which RE? is unfeasible, i.e. there is only
a single saddle-node bifurcation in the AE model as it occurs with varying transmissibility. Note
that the diagrams show the infectives I on the vertical axis. Both scenarios have multiple endemic
equilibria and can be bistable. However, the following differences demonstrate that the bifurcation
behaviour is fundamentally different.

(1) The disease can be endemic in the AE model only for Ry > 1, whereas it can be endemic in
a BB model even if Ry < 1. Moreover, in a BB model, the disease remains endemic in the
host for all Ro > 1. In the AE model, in contrast, the disease (as well as the host) disappears
if Ro > Rgl

(a)

~
o
=

infectives, |
infectives, |

o
|le—o

Ro 1 Ro RS 1
Ro Ro

Figure 6. (a) Bifurcation behaviour in the Allee effect model when varying Rg by increasing 8, (b) Stylized backward
bifurcation. Note that the total host population goes extinct in (a) if the basic reproduction number is larger than Rgl.
Parameter valuesin (a): w = 1,u = 0.1,r = 2,d = 0.2, varying 8.
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(2) The saddle-node bifurcation occurs in the AE model beyond the disease invasion threshold
at R§t > 1, whereas it takes place in a BB model before it at RS < 1.

(3) The direction of the saddle-node bifurcation is mirror-inverted. That is, increasing Ro leads
to the disappearance of the endemic equilibria in the AE model and to their emergence in
a BB model. The former is the basis for the abrupt population collapse. The latter can lead
to an abrupt explosion in infectives if R is increased beyond unity as well as to a sudden
eradication of disease if Ry is reduced below RB

(4) The backward bifurcation induces a critical behaviour primarily for the infectives I, i.e.
whether infection quickly establishes or suddenly disappears. The criticality in the AE model,
in contrast, relates mainly to the total host population N, cf. the bifurcation diagram in Figure 2.
If Ro > RS, the entire population and not only the infectives go extinct. Furthermore, the
unstable equilibrium value of the infectives is of interest for the increased likelihood of
extinction of smaller populations. Obviously, the infectives always disappear for Ry < 1
(unless the initial condition is exactly on the unstable equilibrium). The initial number of
infectives is actually important for whether the host persists (either at the carrying capacity
or endemic equilibrium) or goes extinct.

(5) The bistability and the two endemic equilibria in the AE model are due to the strong
AE. Interestingly, infection can render the system monostable. The bistability and the
endemic equilibria in a BB model are induced by disease characteristics, see [49] for a
review.

7. Discussion and conclusions

Conventional epidemic models (without demographic AE) predict that parasites can eradicate
their host if transmission is frequency-dependent. The transition from population persistence to
extinction takes place gradually when control parameters vary continuously. There is increasing
evidence, however, for positive density dependence leading to strong AEs in host demograph-
ics [12]. The mathematical model considered here suggests that extinction occurs abruptly due
to a fold catastrophe (saddle-node bifurcation). Marginal changes in model parameters can thus
lead to dramatic consequences, namely the spontaneous collapse of the host to deletion.

Extinction research increasingly focuses on synergistic interactions between different pro-
cesses. In combination, single extinction drivers such as habitat destruction or overexploitation
pose a much larger threat to endangered species than in isolation, as they may reinforce them-
selves in declining populations due to amplifying feedbacks [9]. Parasitism and AEs are two such
examples that have long been recognized to increase the risk of extirpations. Their joint interplay
acts as an extreme accelerator in the transition towards extinction. In particular, they define a
tipping point at which the population collapses all of a sudden.

The subtlety of the tipping point is that the host can be extremely abundant just before it.
Figure 5billustrates that the population crashes from a level of over 75 % of the carrying capacity to
nil. Establishing predictors of such spontaneous collapse appears to be difficult, if not impossible.
This would be important for identifying potential extinction risks and guiding management actions.
Close before the tipping point (Ro = RE'), the extirpation is accompanied by prolonged transient
dynamics [32], cf. Figure 5b and 5c. The population seems to be stable over a considerable
time horizon even though it is ultimately commited to its deterministic extinction debt. In nature,
however, the transients are likely to be superimposed by perturbations and stochastic effects. These
factors could speed up or slow down the extirpation. Recognizing the transient approach to deletion
is difficult, and even if it can be identified at all, it might be too late for interventions. Moreover,
the transients occur only after the tipping point and not beforehand (from the point of view starting
with persistence). Therefore, the imminent disaster is almost impossible to anticipate in practice.
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Mathematically, the tipping point is associated with a saddle-node bifurcation. When the two
non-trivial equilibria E; and E_ annihilate each other, there is no endemic attractor left and
extinction is inevitable. E, emerges from the disease-free carrying capacity state if Ry > 1.
Obviously, E, has a larger population size than E_, which bifurcates from the Allee threshold
state on the disease-free boundary into the interior of the phase plane if Ro(u) > 1 & Ro > R§.
The emergence of the unstable equilibrium E_ is essential for the saddle-node bifurcation to
occur. As a saddle point, E_ organizes the extinction basin in the phase plane (cf. Figure 1). In
host populations without critical depensation, it is clearly not possible that an endemic equilibrium
arises from the Allee threshold. Abrupt crashes to extinction thus appear to be characteristic for
strong AEs.

Biologically, the spontaneous population collapse is the consequence of two mechanisms. The
first one is the regulatory potential of parasites. This leads to a depression of the host population
size N at endemic equilibrium. The second mechanism is that additional mortality due to the
disease increases the likelihood of extinction. That is, the effective extinction threshold becomes
larger. The infection, therefore, ‘attacks’ the host from two ends of the population size spectrum,
thus narrowing down the range in which endemic persistence is possible. Extinction takes place
if the range of viable population sizes ceases to exist. Metaphorically speaking, the endemic
population equilibrium is finally absorbed by the expanding extinction basin.

Sudden host population deletion due to fold catastrophes can also be observed in other epidemic
models, in which the strong AE is incorporated differently. Numerical experiments show that the
frequency-dependent model by Deredec and Courchamp [15] exhibits a saddle-node bifurcation
as well (the authors did not report the possibility of multiple endemic equilibria). Furthermore, if
one changes the density-dependent model by Thieme et al. [57] to obey a frequency-dependent
incidence, two endemic equilibriaand their disappearance in a saddle-node bifurcation too become
possible.

The abrupt extinction appears to be rather general for AE populations with frequency-dependent
transmission. This incidence pattern is typically suggested for sexually transmitted diseases [58]
and infections in populations with territorial or social behaviour [1]. In density-dependent trans-
mission models, abrupt host extinction seems to be less general. In [57] multiple equilibria are
not possible — this may be due to the assumptions that infectives do not reproduce at all or that
mortality is density-independent. The model in [36] — the same as in Equations (1) and (2) but
with density-dependent incidence — allows for fold catastrophes, but in a more restricted param-
eter range (e.g. there exists a maximum pathogenicity below which saddle-node bifurcations are
possible). Furthermore, the situation appears to be more complex as three non-trivial equilibria
and tristability are possible. The difference between frequency-dependent and density-dependent
transmission is that the former can maintain infections in smaller population sizes, whereas the
latter cannot promote disease spread if population size is too small [32]. Therefore, the unsta-
ble endemic equilibrium emanating from the disease-free Allee threshold state is not generally
possible for density-dependent incidences.

The existence of a second saddle-node bifurcation when varying pathogenicity rather than
transmissibility is the consequence of the simple fact that highly pathogenic parasites cause their
own extinction but not that of their host. The two saddle-node bifurcations, if they exist, are
separate from each other (cf. Figure 3). They are not related, e.g. by sharing the same saddle
point as in scenarios with three endemic equilibria [26,36,44]. This discontinuity has profound
implications for control measures aimed at impacting the reproduction number. Increasing Ry
can be beneficial for the host if it is changed beyond R, thus facilitating endemic persistence
rather extinction. Decreasing R can be disadvantageous if it is reduced below R, because it
can cause host eradication (as illustrated in Figure 5c).

The separate branches of endemic equilibria also complicate a model analysis that is based
on numerical continuation of stationary states and bifurcations. Computer software such as
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MatCont [16], AUTO [20] or XPPAUT [22] might not detect the second saddle-node bifurcation.
The re-emerging non-trivial equilibria can, therefore, remain hidden and be missed if the analysis
is restricted to numerical tools.

Emerging and introduced infectious diseases have been implicated in the extinction of a large
number of species (cf. references in Section 1). If infected populations are additionally subject
to a strong AE, they may be at much higher risk than previously thought. Even if population
size is considerably large and close to carrying capacity, tiny parameter variations can trigger an
unpredictable and drastic population crash towards eradication. The underlying mechanisms —
population depression and critical depensation due to a strong AE — are fairly basic and could
occur simultaneously in many animal and plant populations. The insights gained from this study
are of particular interest for wildlife management and conservation biology. They also shed new
light on the effectiveness of pathogens as potential biological control agents and on the difficulties
associated with species reintroductions. Moreover, the dramatic changes occurring for large repro-

duction numbers call for shifting the focus of disease control away from the threshold Ry = 1.

The tipping points Rgm > 1 with their catastrophic consequences appear to be much more sig-

nificant. Small parameter changes around Rgm may preserve the population in its existence,
while the aim of reducing R below one might be unrealistic and gain relatively little additional
benefit.
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Appendix A. Existence conditionsfor two nontrivial stationary states

There are two endemic equilibriaif Ry > 1and ®(Nmax) > 0, with Nmax = (i + Br[1 + ul)/(2Br). The latter inequality
can be solved explicitly in terms of model parameters. Solving for the transmissibility, one obtains 8 < 81 or 8 > fo,
where

B2 = %(B + VB2 +rA),

A=4p—r(l—w?and B:=1+4u+2(d +ru + pu) > 0. If u > uC, with ;€ being defined as in Equation (6), then
A > 0 and consequently 81 > 0, while 82 < 0. Conversely, if u > u, then A < 0 and both g1 » are either negative or

imaginary.
Solving ®(Nmax) > 0 for the pathogenicity, one obtains u < w1 or > up, where
2= b (CF /T A+ apA-w)
L= T 4

and C := 2(8 —d — ru) — 1 — u. It can be shown that both w1 > are real and positive if 8 > B¢, with 8¢ being defined
as in Equation (7). Otherwise, w1 2 are either negative or imaginary.



