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H I G H L I G H T S

� We give theoretical support to recent experimental findings.
� Adaptive limiter control can be a global method to stabilize population oscillations.
� Our analytical results provide guidance how to choose the control intensity.
� The initial transients can be important and inflate the control effort.
� We present new properties with important practical implications.
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a b s t r a c t

We analyse the adaptive limiter control (ALC) method, which was recently proposed for stabilizing
population oscillations and experimentally tested in laboratory populations and metapopulations of
Drosophila melanogaster. We thoroughly explain the mechanisms that allow ALC to reduce the magnitude
of population fluctuations under certain conditions. In general, ALC is a control strategy with a number of
useful properties (e.g. being globally asymptotically stable), but there may be some caveats. The control
can be ineffective or even counterproductive at small intensities, and the interventions can be extremely
costly at very large intensities. Based on our analytical results, we describe recipes how to choose the
control intensity, depending on the range of population sizes we wish to target. In our analysis, we
highlight the possible importance of initial transients and classify them into different categories.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stability of biological populations has attracted a lot of atten-
tion because it determines, amongst others, extinction probability
(Thomas et al., 1980; Berryman and Millstein, 1989; Allen et al.,
1993), effective population sizes and genetic diversity (Mueller
and Joshi, 2000) as well as population fitness (Charlesworth, 1994).
A large range of fluctuation in the population size over time tends
to invoke a low stability of the population. Several authors have
therefore proposed control strategies to stabilize a population (e.g.
McCallum, 1992; Solé et al., 1999; Stone and Hart, 1999; Hilker and
Westerhoff, 2006, 2007a; Liz, 2010; Carmona and Franco, 2011;
Dattani et al., 2011; Franco and Perán, 2013). These control
strategies typically aim at creating stable population sizes by
removing (harvesting/thinning) or adding (stocking) individuals

following certain rules. Although the mechanisms of these strate-
gies are theoretically well understood, experimental demonstra-
tion of reduced population fluctuations remains rare (Desharnais
et al., 2001; Becks et al., 2005; Dey and Joshi, 2007, 2013) and
there is, in general, a lack of empirical evidence for the stabilizing
properties of control methods.

Recently, Sah et al. (2013) have proposed adaptive limiter control
(ALC) as a novel method for controlling population oscillations. The
idea behind ALC is to restock the population if there is too large a
crash in the population size. More specifically, individuals are added
if the population size falls below a certain fraction of its value in the
previous generation. ALC is related to the family of limiter control
methods (see the next section for a more detailed description of the
method). Sah et al. (2013) have tested ALC in experiments with
laboratory populations and metapopulations of the fruit fly Droso-
phila melanogaster. Their results suggest that increased ALC intensity
enhances population stability, measured in terms of reduced fluctua-
tions and extinction frequencies.

ALC is in some sense ‘atypical’ when compared to other control
methods, because it is one of the few methods that have been
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studied empirically. Sah et al. (2013) corroborate their experimental
results also by some numerical simulations of a mathematical
model. However, it is inherent to the method of numerical simula-
tions that they only apply to particular situations, specified for
example by the values of model parameters and initial conditions. It
is not clear whether results observed for some simulations will hold
for other simulations. For instance, we support the observation of
Sah et al. (2013) that in some situations ALC is not only ineffective,
but actually worsens population stability. Hence, the question arises
whether or not, and under which circumstances, ALC is a good
strategy to stabilize biological populations.

In this paper, we present mathematically rigorous results on ALC.
They provide a theoretical basis for the stabilizing properties observed
in the experiments and simulations by Sah et al. (2013). Currently,
there is a lack in the theoretical understanding of ALC, as there are no
results available that explain the mechanisms and effects of ALC. Our
analytical results thus contribute to filling this gap.

In the next section, we begin with introducing ALC in a simple
deterministic setting. We then present a number of analytical
results. The main one confirms the observation of Sah et al. (2013)
that greater ALC intensities invoke the population to have lower
variation in size over time, measured in terms of the fluctuation
range. In addition, we present a number of novel results. We work
out a number of useful properties that can be relevant for the
implementation and applicability of ALC. This includes the fre-
quency and the cost of interventions; a description of initial
transients; how to plan ahead; and how to choose the ALC
intensity in order to attain a certain desired reduction in the
fluctuation magnitude. Moreover, we show that the stabilizing
effect of ALC is global, i.e. independent of the initial population
size, for a wide range of population models.

2. Adaptive limiter control

2.1. Underlying population dynamics

Before introducing the ALC method and some of its effects, we
describe the underlying population dynamics in the absence of
control. We assume that the uncontrolled population follows the
discrete-time dynamical system given by

xtþ1 ¼ f ðxtÞ; x0A ½0;1Þ; tAN; ð1Þ

where xt denotes the population size at time step t. Function f
describes the population production, sometimes also called the

stock–recruitment curve, and is assumed to satisfy the following
conditions:

(C1) f : ½0; b�-½0; bÞ (b¼1 is allowed) is continuously differenti-
able and such that f ð0Þ ¼ 0 and f ðxÞ40 for all xA ð0; bÞ.

(C2) f has two nonnegative fixed points x¼0 and x¼ K40, with
f ðxÞ4x for 0oxoK , and f ðxÞox for x4K .

(C3) f has a unique critical point doK in such a way that f ′ðxÞ40
for all xAð0; dÞ, f ′ðxÞo0 for all x4d, and f ′ð0þ Þ; f ′ðb�ÞAR.

These conditions are standard assumptions in the study of
discrete-time population dynamics (e.g. May, 1976; Singer, 1978;
Cull, 1981; Schreiber, 2001; Liz, 2007; Carmona and Franco, 2011).
Essentially, they describe a hump-shaped population production
(peaking at x¼d). From a biological point of view, the population
dynamics are overcompensatory, caused e.g. by scramble competi-
tion (Britton, 2003). The population has two fixed points, namely
the extinction state x¼0 and a positive equilibrium x¼K. There is
no demographic Allee effect. Examples include the Ricker (1954),
Hassell (1975) and generalized Beverton–Holt (Bellows, 1981)
maps, in their overcompensatory regimes where applicable.

2.2. Modelling ALC

If the population size xt at time step t drops below a certain
threshold, then there is an intervention augmenting the popula-
tion back to this threshold. In this, ALC is similar to limiter control
methods (Corron et al., 2000; Hilker and Westerhoff, 2005, 2006).
Since the threshold is a fraction of the previous population size
and as such variable, the limiter is considered ‘adaptive’. In Fig. 1
we illustrate how ALC modifies the dynamics of the population. In
particular, we can observe a reduction in the fluctuation range.

When applying ALC, we have two different population sizes at
time step t, namely the population size before and after the action
of ALC. In discrete-time models, the order of events is important
(Åström et al., 1996; Bodine et al., 2012; Lutscher and Petrovskii,
2008). Let us denote by bt (respectively at) the population size
before (respectively after) the action of ALC in time step t. We note
that btrat , because ALC never removes individuals.

If ALC augments the population size, this induces an ‘intra-
generation’ variation. We illustrate this in Fig. 1 with dashed red
lines. In this example, we can observe that the sizes of bt and at are
different when ALC is applied.

A direct consequence of having two population sizes at time
step t is that we must choose one of them to define the adaptive
threshold in the next time step tþ1. In their experiments and
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Fig. 1. During the first 20 generations, the population is uncontrolled and follows Eq. (1). In the next 20 generations, the population is controlled by ALC, following system
(2). Blue circles and red triangles indicate the population size after and before ALC, respectively. Therefore, a blue circle inside a red triangle corresponds to a generation
where ALC did not modify the population. Dashed lines connecting blue circles with red triangles indicate ALC interventions (thus inducing intra-generation variation). Note
the clear reduction of the fluctuation range in the controlled population compared to the uncontrolled population. Population dynamics follow the Ricker map
f ðxÞ ¼ x expðrð1�x=KÞÞ with growth parameter r¼3 and carrying capacity K¼60. ALC is applied with intensity c¼0.75. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this paper.)
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numeric simulations, Sah et al. (2013) select at rather than bt.
With this choice, the populations dynamics are captured by the
following system of difference equations:

btþ1 ¼ f ðatÞ and atþ1 ¼
btþ1; btþ1Zc � at ;
c � at ; btþ1oc � at ;

(
ð2Þ

where 0oco1 is a control parameter measuring the ALC intensity.
Substituting the value for btþ1 in the first equation of system

(2) into the second one, we obtain that the population dynamics
are determined by the piecewise smooth dynamical system given
by the first-order difference equation

atþ1 ¼
f ðatÞ; f ðatÞZc � at ;
c � at ; f ðatÞoc � at ;

(
ð3Þ

which can be written in one line by using the maximum function

atþ1 ¼maxff ðatÞ; c � atg: ð4Þ

In the following sections, we will assume (unless stated otherwise)
that the population is censused after ALC, i.e. xt≔at . We then get
the equation

xtþ1 ¼max f ðxtÞ; c � xt
� �

: ð5Þ
Note that neither system (2) nor Eq. (5) can be transformed into

the following equation proposed by Sah et al. (2013):

xtþ1 ¼
f ðxtÞ; xtZc � xt�1;

f ðc � xt�1Þ; xtoc � xt�1;

(
ð6Þ

which is the same as

xtþ1 ¼ f ðmaxfxt ; c � xt�1gÞ:
This equation assumes population census before ALC, i.e. xt≔bt ,
and can be obtained from

btþ1 ¼ f ðatÞ and atþ1 ¼
btþ1; btþ1Zc � bt ;
c � bt ; btþ1oc � bt :

(
ð7Þ

Even though Sah et al. (2013) wrote down Eq. (6), they have
used Eq. (5) for their numerical simulations and their laboratory
experiments (personal communication with the authors). In this
paper, we will exclusively consider Eq. (5) and refer to it as ALC.

We will consider Eq. (6) in a separate paper, showing that it has
more complex dynamics with possibly adverse consequences.
Note that Eq. (6) is of second order, whereas Eq. (5) is of first
order. Another difference is that the thresholding in Eq. (6) is
based on population sizes before control (see Eq. (7)), whereas the
thresholding in Eq. (5) is based on population sizes after control
(see Eq. (3)). We propose to distinguish between the two strategies
by denoting them as ALCb and ALCa, respectively. Since we only
consider ALCa in this paper, we refer to it as ALC in short.

The thresholding in ALCb is determined by bt�1. This extra time
lag is the reason why ALCb is second order, and also why ALCb and
ALCa are not topologically conjugated. They therefore have quali-
tatively different dynamics, even though there are only two
processes of reproduction and control (Hilker and Liz, 2013).
A similar effect occurs in the threshold harvesting strategies
proposed by Costa and Faria (2011) and Franco and Perán (2013),
as the respective thresholds are defined at different points of time.

2.3. Activation threshold

Before focusing on the stability properties, we highlight an
interesting feature of ALC. It concerns the intervention patterns of
ALC and, despite its potential practical implications, has not been
previously reported.

To begin with, recall that ALC only modifies the population in
certain generations, namely if the population has dropped below a
fraction of its size in the preceding generation. In principle, this

would imply that the controller has to wait until measuring the
population size in generation t before deciding whether or not
control action is necessary. However, Fig. 1 seems to indicate that
ALC only acts if the previous population size is large enough
(notice that interventions indicated by the red dashed lines are
always preceded by large population sizes). This suggests the
existence of a ‘hidden’ threshold level, i.e. ALC is activated in
generation t only if the population size in the previous generation
t�1 exceeds this threshold level.

This threshold level does indeed exist (rigorously shown in
Appendix A, see Lemmas 1 and 2). Henceforth, we will refer to it as
the activation threshold and denote it with AT. We also prove
the following: Only if at, the population size after ALC, exceeds the
activation threshold AT in some generation t, this will trigger the
control in the next generation tþ1 (see Corollary 2 in Appendix A).
This knowledge can be proved to be very useful in practical
situations, as the controller will know in advance that an interven-
tion is necessary in the next generation. In some sense, surpassing
the activation threshold is a kind of ‘early-warning signal’ for
impending control action.

Geometrically, the activation threshold can be found as the first
component of the intersection point of the graph of f and the
straight line y¼ c � x (see Fig. 2). It is related to the carrying
capacity K of the uncontrolled map by the inequality

c � AT rKrAT :

In particular, the activation threshold is greater than the carrying
capacity. This implies that ALC will never act in (under-)compen-
satory population dynamics when starting from small initial
conditions, as the approach to the carrying capacity is monotoni-
cally increasing.

Fig. 3 illustrates the practical importance of the activation
threshold. As before, red triangles mark the generations in which
ALC perturbs the population. We observe that this happens if and
only if the preceding population size is greater than the activation
threshold (marked by blue filled circles).

3. Reduction of the fluctuation range

First of all, we point out that ALC is not able to stabilise
oscillations towards an equilibrium point (see Proposition 2 in

d cAT K AT

y = c · x

y = x

y = f (x)

x

y

Fig. 2. ALC is implemented whenever the straight line y¼ c � x (shown in bold black
line) is above the graph of the population production f (shown in red curve). The
activation threshold AT is defined by their intersection. Note how for each value of
the control parameter cA ð0;1Þ the carrying capacity K of f is enveloped by c � AT

and AT. As c increases (i.e. the bold black line approaches the thin grey line), the
difference AT�c � AT shrinks to zero. (For interpretation of the references to colour
in this figure caption, the reader is referred to the web version of this paper.)
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Appendix A). But if the control parameter satisfies a certain
condition, then ALC confines the population sizes within a region
around the carrying capacity. This ‘trapping region’ can be defined
by means of AT, that is, it is completely determined by the map f
and the control parameter c.

Theorem 1. Assume that (C1)–(C3) hold. Additionally, suppose that
for a fixed cAð0;1Þ the activation threshold AT exists and satisfies the
inequality

drc � AT ; ð8Þ

where d is the population size generating the maximum offspring,
cf. (C3).
Then, applying ALC with intensity c confines the population sizes at

and bt into the following intervals around the carrying capacity K:

Ia≔½c � AT ; f ðc � AT Þ� and Ib≔f ðIaÞ; ð9Þ

for any x0Að0; bÞ.
The proof of Theorem 1 is in Appendix A. Theorem 1 can be

used to rigorously prove that ALC is able to reduce the fluctuation
magnitude, as observed by Sah et al. (2013). The intervals Ia and Ib
correspond to a trapping region of possible population sizes and
thus confine the oscillation amplitudes. Hence, the smaller the
trapping regions the smaller the fluctuation range. Note that as the
control parameter c tends to 1, the activation threshold AT tends to
the carrying capacity K. In consequence, as long as Condition (8)
holds, increasing ALC intensity c shrinks the trapping region.
Moreover, the result establishes that such behaviour is global,
i.e. independent of the initial population size.

Fig. 4a shows bifurcation diagrams of the population size with
varying ALC intensity. The blue and red attractors correspond to
the population sizes after and before ALC, respectively. Note that
the population sizes after ALC intervention are generally greater
than the ones before intervention, because ALC augments the
population. In the absence of control (c¼0), the oscillations are
chaotic and extend over a wide range of values with extreme
amplitudes. With increasingly larger ALC intensity, however, the
range over which the population sizes fluctuate begins to shrink.
In particular, the size of both the blue and red attractors (i.e. the
fluctuation ranges) shrinks to zero as the control tends to its
maximum possible value c¼1. Hence, increasing c confines the
population size around the carrying capacity even though this
carrying capacity can never be an asymptotically stable fixed point.

The fluctuation ranges are well approximated by the trapping
regions Ia and Ib given in Theorem 1. In fact, these intervals are
sharp, that is, they cannot be improved. To illustrate this, Fig. 4a
shows their upper and lower limits as black curves. Observe how
these limits cannot be improved for c≳0:4, because it is impossible to
find smaller intervals which enclose the asymptotic population sizes.

Note that chaos is suppressed and replaced by periodic
dynamics for small to intermediate ALC intensities, but reappears
for larger ALC intensities. This has already been observed by Sah
et al. (2013). The blue attractor in Fig. 4a corresponds to the

Fig. 3. Time series of a controlled population. Red triangles and blue circles indicate the population size before and after ALC, respectively. The horizontal red dashed line
gives the activation threshold AT, and filled blue circles indicate population sizes after ALC greater than the activation threshold. These instances are always followed by
vertical red dashed lines in the next generation, where ALC is implemented. Moreover, note that, after an initial transient, there is always at least one generation in between
two control interventions. Parameter values as in Fig. 1 with c¼0.75 and AT � 65:8. (For interpretation of the references to colour in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 4. (a) Bifurcation diagram illustrating the reduction of population fluctuation
as the ALC intensity increases. Red dots represent population sizes before ALC, bt,
and blue dots population sizes after ALC, at. The bold black curves enveloping the
attractors mark the limits of the intervals defining the trapping regions given in
Eq. (9). Note that the trapping regions cannot be improved over a wide range of
control parameters. (b) Fluctuation indices (FIs) considering only inter-generation
variations (red line with filled circles for bt and blue line with empty circles for at)
and considering the intra-generation changes in the population (black line with
crosses). The horizontal line marks the FI of the uncontrolled population. The
diagrams are based on the Ricker map f ðxÞ ¼ x expðrð1�x=KÞÞ with r¼3 and K¼60,
removing initial transients. The initial population size is chosen as a pseudo-
random number in ½0; f ðdÞ�. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this paper.)
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bifurcation diagram in Sah et al. (2013, their Fig. 2a). We also show
the population sizes before ALC interventions (red attractor in
Fig. 4a), in order to complete the picture.

Theorem 1 imposes a condition on the model parameters in the
form of Inequality (8). It is easy to verify this condition numerically
or graphically. For example, in the case of Fig. 4a, Theorem 1 holds
for c≳0:22. In fact, we can use Condition (8) to obtain a lower
bound for the ALC intensity. The condition holds if and only if

c4
d

max f�1ðdÞ
: ð10Þ

This lower bound depends purely on the shape of the production
map f. The kind of species that are most likely to satisfy this
condition are those that (i) reach their maximum offspring at a
small population size d, i.e. with a large reproduction potential and
(ii) have only a slight reduction in their offspring after surpassing
the carrying capacity, i.e. scramble competition is mild. This would
suggest species with unstable, but not strongly chaotic population
dynamics.

So far, we have considered the fluctuation range as a measure
of constancy stability (in the sense of population size staying
essentially unchanged). We remark that this measure is close to
what is captured by the coefficient of variation, i.e. the variation of
the time series data (e.g. Mueller and Joshi, 2000; Prasad et al.,
2003). However, there are many different measures to quantify
this stability concept (Grimm and Wissel, 1997). In the remainder
of this section, we will consider another measure, namely the
fluctuation index (FI). We will see that the stabilizing properties
may differ depending on the choice of measure.

The FI is a dimensionless measure of the average one-step
variation of the population size scaled by the average population
size in a certain period. It was introduced in Dey and Joshi (2006)
and employed by Sah et al. (2013) to study the stability properties
of ALC. Mathematically, the FI is given by

FI ¼ 1
Tx

∑
T�1

t ¼ 0
xtþ1�xt ;j
��

where x is the mean population size over a period of T time steps.
When measuring population sizes before and after ALC inter-

vention, there are three natural choices for the FI. Obviously, we
can consider FIs based on population sizes only (i) after and (ii)
before ALC. They represent inter-generation variation in popula-
tion sizes. Moreover, we can additionally consider intra-generation
variation. For this, (iii), we calculate the FI as the one-step change
in population size including intra-generation variation, that is,

2

TðaþbÞ
∑
T�1

t ¼ 0
ð atþ1�btþ1 þ btþ1�at Þ:

��������
The results are shown in Fig. 4b.

The value of all three FIs is the same when the ALC intensity is
zero, i.e. for the uncontrolled system, or very small. But otherwise
the FIs take different values from each other. We observe that the
FIs considering inter-generation variations envelope the FI con-
sidering the intra-generation variations. Moreover, for a given ALC
intensity, the FI of at is always smaller than the others. It is also
the first to drop below the value of the uncontrolled system (at
c� 0:19). The other FIs require significantly larger control para-
meters (c� 0:37 and c� 0:43) to drop below the baseline set by
the uncontrolled system.

Crucially, the FI can be larger than in the uncontrolled system.
This has been touched upon only briefly by Sah et al. (2013), but it
is worth noting that it can happen for a considerable range of ALC
intensities. In the case of Fig. 4b, ALC increases the FI for almost
20% of possible parameter values, when considering at, and for
around 40% of possible parameter values when considering bt or
incorporating the intra-generation variation. We remark that these

percentages will vary when considering other population maps
and parameter values. However, it is clear that ALC does not
always enhance population stability (when measured in terms of
the FI), but may actually make things worse.

4. How to choose the ALC intensity

We have already seen that Theorem 1 gives us a lower bound of
the control parameter, see Condition (10). In practical situations,
however, one often wants to know how to choose the control
intensity, in order to achieve a certain outcome, e.g. a desired
reduction of the fluctuation range or preventing outbreaks or very
small population sizes. In fact, targeting can be a main issue when
controlling a population (Hilker and Westerhoff, 2007b; Dattani et al.,
2011). In this section we show how Theorem 1 can be used to actually
calculate the ALC intensity required to establish a lower or upper
bound for the population size, or to reduce the oscillation range to a
desired value.

Firstly, we consider the case that wewant to avoid population sizes
dropping below a certain value L. For instance, this can be important
for the persistence of endangered species. Notice that we are looking
for cA ð0;1Þ such that Condition 8 holds and min Ib ¼ f 2ðc � AT Þ ¼ L
because in such a case Theorem 1 guarantees the desired behaviour.
We denote, as usual, f 2≔f○f , f 3≔f○f 2 and so on. Since by definition
c � AT ¼ f ðAT Þ, we have that f 2ðc � AT Þ ¼ f 3ðAT Þ, c¼ f ðAT Þ=AT , and
Condition 8 can be rewritten as AT AðK;max f�1ðdÞ�.

Therefore, if we want to know the ALC intensity required to avoid
population sizes dropping below L, we have to solve the equation
f 3ðxÞ ¼ L in the interval ðK ;max f�1ðdÞ�. This equation can have at
most one solution in such an interval, since by conditions (C1)–(C3)
the restriction of f 3 to the interval ðK ;max f�1ðdÞÞ is increasing. If the
solution exists and we denote it by x̂, then the ALC intensities

cZ
f ðx̂Þ
x̂

do not allow the population size to go below L. We point out that, by
the way we constructed x̂, the above condition ensures that Theorem
1 holds.

Secondly, consider the case that we want to prevent population
outbreaks, e.g. if the species is a pest. Suppose that we want to
calculate the ALC intensity required to maintain the population
size below a prefixed amount U. We look for c such that
Condition 8 holds and max Ia ¼ f ðc � AT Þ ¼ U, because in such a
case Theorem 1 guarantees the desired behaviour. As in the
former case, equality c � AT ¼ f ðAT Þ allows us to reduce the
problem of finding such c to that of solving the equation
f 2ðxÞ ¼U in the interval ðK ;max f�1ðdÞ�. This equation can have
at most one solution in such interval, because f 2 is decreasing
in this interval. If the solution exists and we denote it by x̂,
then the ALC intensities cZ f ðx̂Þ=x̂ maintain the population size
below the upper bound U.

Finally, consider the case that we want to guarantee that the
population sizes are in a range of diameter D. Then, similar to the
cases above, we have to solve the equation

f 2ðxÞ�f 3ðxÞ ¼D ð11Þ

in the interval ðK;max f�1ðdÞ�. This equation can have at most one
solution in such interval because of the above monotonicity proper-
ties of f 2 and f 3. If the solution exists and we denote it by x̂, then the
ALC intensities cZ f ðx̂Þ=x̂ are able to confine the population fluctua-
tions within an interval of diameter D or smaller.
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4.1. Examples

We illustrate the above results in the following three examples,
where we consider the Ricker map f ðxÞ ¼ x expðrð1�x=KÞÞ with
r¼3 and K¼60. We recall that in this case d¼ K=r¼ 20.

1. Suppose that we want the population size to be greater than
L¼25. Solving f 3ðxÞ ¼ 25 in the interval ½60;max f�1ð20ÞÞ �
½60;90:1048Þ, we obtain that x̂ � 65:7942. Therefore, the ALC
intensity we are looking for is c¼ 30=x̂ � 0:7485 or greater.
Fig. 5a shows that such an ALC intensity indeed has the desired
effect. The control begins to act in generation 20. Note that,
after a short transient of two time steps, the population size
never drops below L¼25.

2. Suppose that we want the population size not to surpass the
upper limit U¼75. In order to figure out the adequate ALC
intensity, following the indications above, we need to solve the
equation f 2ðxÞ ¼U in the interval ½60;90:1048Þ. Its solution is
x̂ � 63:6182. Therefore, the ALC intensity we are looking for is
c¼ 30=x̂ � 0:8345 or greater. In Fig. 5b we apply ALC with
c¼0.8345, beginning after 20 generations. Then, the population
sizes do not exceed the upper bound U¼75. As in the previous
example, the last affirmation is true after a short transient of
two generations, in which the population still exceeds the

prefixed upper bound. In the next section we will discuss the
behaviour of these initial transients in more detail.

3. Suppose that our objective is to guarantee that the population
oscillates around the carrying capacity with a variation ofless
than D¼75. Solving Eq. (11) in the interval ½60;90:1048Þ, we
obtain that x̂ � 67:8083. Therefore, the ALC intensity we are
looking for is c¼ f ðx̂Þ=x̂ � 0:6768 or greater. Fig. 5c illustrates
that the ALC intensity c¼0.6768 yields the desired dynamics.

5. Costs of applying ALC

In this section we investigate the initial transients and the
frequency of interventions. Both issues have not been considered
before and are closely related to the cost of applying ALC. There-
fore, they are very interesting from the practical point of view. We
also consider the effort, i.e. the number of individuals that have to
be added when augmenting the population.

5.1. Initial transients

In the previous section we have proven that ALC asymptotically
(i.e. in the long run) confines the population size to a trapping
region. However, the asymptotic state (or dynamics) can be

Fig. 5. Illustration of how to choose the ALC intensity to achieve different objectives. The shadowed areas correspond to the target of the control: (a) minimum population
size of L¼25; (b) maximum population size of U¼75; (c) maximum oscillation range of diameter D¼75. The first 20 generations are without control. Note how the
population size enters, after some initial transients in cases (a) and (b), into the target region. In all cases f is the Ricker map with r¼3 and K¼60. The ALC intensities are
calculated in the examples of the main text.
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preceded by an initial transient where the population is outside
the trapping region (see Fig. 5). These initial transients are, of
course, finite. That is, they comprise a limited number of time
steps, and for that reason they are frequently neglected when
considering the properties of control strategies. Yet, considering
these initial transients is critical for understanding and predicting
the consequences of control strategies (Ezard et al., 2010; Frank
et al., 2011; Hastings, 2004). Firstly, despite being finite, the initial
transients can last over tens or hundreds or generations, which
renders them highly relevant from a practical point of view. Secondly,
nature is full of perturbations, environmental fluctuations and sto-
chastic effects. Hence, transients appear continuously. In fact, one
could argue that the asymptotic dynamics might never be reached,
and many of the observations might be influenced by transients. Here,
we describe the possible initial transients for ALC, how they affect the
performance of ALC and how long they might last.

There can be three different types of initial transients when
implementing ALC (see Corollary 3 in Appendix A for mathema-
tical details). They are illustrated in Fig. 6.

(a) In the first type of initial transients, the population size
increases monotonically until reaching the trapping region
(red circles in Fig. 6). No control intervention is necessary,
hence ALC is actually never applied during this initial transi-
ent. This corresponds to type (a) in Corollary 3.

(b) In the second type of initial transients, ALC always acts in
consecutive interventions before the population size reaches

the trapping region (black squares in Fig. 6). Hence, ALC is
applied every generation and the population alternates
between peaks and troughs in a damped oscillation due to
the effect of the control. This initial transient corresponds to
type (b) in Corollary 3.

(c) The third type of initial transients is a mixture of (a) and (b).
Initially, the population size increases as in type (a), but then
ALC acts every generation as in type (b) until the population
size reaches the trapping region. See the blue triangles in
Fig. 6. In some sense, this initial transient has two ‘sub-
transients’. It corresponds to type (c) in Corollary 3).

We have detected that there exists an upper bound for the number
of interventions during the initial transients (see Corollary 3 in
Appendix A). This gives us an estimate of how long the initial transient
might possibly last. We also find that the upper bound depends on the
ALC intensity: the higher the ALC intensity the greater the upper
bound for the interventions. Moreover, the maximum population sizes
decrease in time during the initial transient with consecutive ALC
interventions (i.e. in type (b) and after the first sub-transient in type
(c)). Therefore, applying ALC with very high control intensities makes
it more likely that there are relatively long initial transients.

5.2. Effort

We have seen that the initial transients can be substantial in
terms of both length and number of interventions. This raises the

Fig. 6. Three different types of initial transients that ALC can produce. Red circles, black squares and blue triangles respectively correspond to initial transients of type (a),
(b) and (c) in Corollary 3. Initial conditions are chosen as 4, 140 and 2; control intensity is set to c¼0.93; and f ðxÞ ¼ x expðrð1�x=KÞÞwith r¼3 and K¼60. Interventions by ALC
to augment the population are indicated by strictly vertical lines joining two population sizes, which correspond to the population sizes before and after ALC. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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question how the initial transients can affect the effort of applying
ALC, measured as the total number of individuals added during a
certain number of generations. We notice that such an effort was
already calculated for ALC in Sah et al. (2013, their Fig. 3c) and for a
pure limiter control (LC) strategy in Hilker and Westerhoff (2005),
but both papers considered the asymptotic effort with transient
cut off.

Here, we consider the (transient) effort by taking into account
initial transients. We numerically approximate the expected value
of the effort over a time period of 50 generations, as a function of
the ALC intensity (blue line in Fig. 7). Moreover, for the sake of
comparison, we also approximate such an effort for the limiter
control strategy, in which the limiter is not adaptive but constant
(see red dashed line in Fig. 7). For this, we have fixed the limiter as
c � AT , since this value asymptotically yields the same reduction of
the fluctuation range for both control strategies. Therefore, the
population controlled by LC follows the equation xtþ1 ¼max
ff ðxtÞ; c � AT g.

While the effort of applying ALC tends to decrease for intermedi-
ate values of the control parameter, it increases sharply for larger ALC
intensities and blows up near the maximum ALC intensity. This is
backed by our previous finding that the maximum length of the
transients with possibly costly interventions increases with c. Hence,
the controller may be in a dilemma. On the one hand, large control
parameters reduce the fluctuation range significantly. On the other
hand, they are also likely to create costly initial transients.

The (transient) effort curve in Fig. 7 is very different from the
asymptotic effort calculated by Sah et al. (2013). They found that
the asymptotic effort decreases to 0 when the ALC intensity
approaches its maximum value. Hence, finite-time considerations
may change the conclusions from effort analyses drastically. It
seems important not to neglect the impact of initial transients.

Interestingly, the effort of the pure LC strategy is greater than
the effort of ALC for intermediate to large values of the control
parameter. But for very large control intensities, LC is less costly,
even when achieving a similar reduction of the fluctuation range.
Therefore, the initial transients may be less costly when a fixed
limiter is employed instead of an adaptive limiter. This suggests
that in some cases using a mixed strategy could be a more
effective way of applying limiter control with high control inten-
sities (e.g. if we need to achieve a big reduction in the fluctuation
range). First, a pure limiter control can be applied for avoiding
the costly initial transients, and afterwards we switch to adaptive
limiter control.

5.3. Asymptotic frequency of interventions

Let us consider a scenario in which having access to individuals
is not difficult, but implementing the intervention is very costly
logistically, for example because the habitat of the population is
remote and difficult to reach. Clearly, in such a scenario it would be
desirable to maintain the number of interventions as low as possible
to reduce the cost of the control. The previous section informed us
about the frequency of interventions during initial transients. Here,
we complete such information with a result about the asymptotic
frequency of interventions inside the trapping region.

Proposition 1. Assume that conditions of Theorem 1 hold and that,
in addition, the following inequality holds

c � f ðc � AT ÞoAT : ð12Þ

Then ALC never acts consecutively if the population size is inside the
trapping region (9).

The proof of Proposition 1 is in Appendix A. Proposition 1
guarantees that, after augmenting the population in one genera-
tion, the next generation will not be affected by the control if
Condition (12) holds. Hence, there is at least one generation
without intervention before the next intervention takes place. In
particular, over a period of N generations, there are at most ⌊N=2⌋
interventions, inside the trapping region.

Condition (12) depends on the control intensity and the
parametrization of the production function f. Fig. 8a shows
the number of consecutive ALC interventions as a function of the
control intensity and the growth parameter of the Ricker map.
The simulations confirm that no consecutive interventions are
required if Condition (12) holds. Moreover, this condition is sharp
for small to intermediate control intensities.

Fig. 8b shows the total number of interventions (which can
include consecutive interventions). It appears that it is generally
somewhat advantageous to be in the parameter region enclosed by
Conditions (12) and (8) of Theorem 1, the latter of which gives a
lower bound for the ALC intensity to reduce the fluctuation range.
For example, consider a fixed r¼3 and vary c between 0.4 and 0.6
(following the upper horizontal white line). Then the number of
interventions changes in a smooth way. But if we fix r¼3.5 and vary
c in the same interval (following the upper horizontal white line), the
number of intervention changes abruptly and increases drastically.
This happens when crossing the curve representing Condition (12).

Fig. 7. Expected value of the effort of applying ALC (blue line) and LC (red dashed line) over the first 50 generations. Observe that, for ALC, the effort increases when c is
greater than approximately 0.85 and blows up near the maximum ALC intensity c¼1. Also observe that for high ALC intensities (greater than approximately 0.87) the effort is
smaller for LC than for ALC. In all cases f is the Ricker map with K¼60 and r¼3. Initial population sizes are uniformly distributed in the interval ½0; f ðdÞ�. (For interpretation of
the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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6. Discussion

Adaptive limiter control is one of the few chaos control methods
in population biology that have been tested experimentally
(Sah et al., 2013). In this paper, we provide a rigorous theoretical
foundation for the stabilizing effect of ALC. Moreover, we provide a
range of analytical insights that have very practical relevance: how to
choose the control intensity in order to achieve different types of
desired outcomes; how to plan ahead and expect the next interven-
tion; and the efficiency of control in terms of effort and intervention
frequency.

Sah et al. (2013) pointed out that one of the main character-
istics of ALC is that for enhancing constancy stability no informa-
tion about parameters like the growth rate or carrying capacity are
needed, as long as the control intensity is not too small. In practice,
however, it is difficult to judge what this means exactly and how

the control intensity has to be chosen. In this paper, we have
quantified this critical control intensity by finding an analytical
expression of its lower bound (see Condition (10)). This expression
clearly reveals that the effectiveness of ALC does depend on the
model parameterization. However, we remark that the corre-
sponding maps can often be easily estimated from time series
data (e.g. Rinaldi et al., 2001). Since the activation threshold is
also a function of model parameters, it can be approximated in a
similar way.

In this paper, we have considered deterministic models of
population dynamics, but real populations are of course exposed
to various sources of stochasticity. Clearly, in stochastic systems
exceeding the activation threshold does not necessarily imply an
ALC intervention in the next generation. Similarly, staying below
the activation threshold does not imply a guarantee that there will
be no need for an ALC intervention in the next generation.
However, the activation threshold still remains useful as a signpost
for potential future control actions, even if it has to be understood
probabilistically.

The presence of noise can be critically important if there is
bistability in the dynamics. This is caused by the ALCb strategy,
where demographic and environmental stochasticity can induce a
switching between alternative attractors. One of the attractors
corresponds to the stabilized regime, whereas the other one can
considerably increase instability and extinction risk.

6.1. When ALC is effective

The concept of constancy stability describes that the population
size remains essentially unchanged (Grimm and Wissel, 1997). As
a measure of such stability we have considered the fluctuation
range, that is the extent between minimum and maximum of
population sizes that oscillate over time. The smaller the fluctua-
tion range the more stable we consider the population to be.
Theorem 1 guarantees that, for sufficiently large control intensi-
ties, the fluctuation range decreases if the control intensity is
increased. Therefore, it provides a rigorous analytical basis for the
stabilizing effect of ALC and thus offers a theoretical explanation
for the reduction in fluctuation range observed in Sah et al. (2013).

There are two caveats, however. Firstly, there is a lower bound
on the control intensity. That is, Theorem 1 only holds (and ALC is
therefore guaranteed to be effective) for sufficiently large control
parameters. If this lower bound is surpassed, the more effective
the ALC is the larger the control intensity.

The second caveat concerns a different measure of stability. If
we consider the fluctuation index rather than the fluctuation
range, then ALC may actually further destabilize the population
as observed by Sah et al. (2013). That is, ALC may not only be
ineffective, but actually counter-productive. Again, this happens
for smaller values of the control parameter (see Fig. 4b).

6.2. Cost of control

The above considerations suggest to choose a sufficiently large
control intensity. The drawback, however, is that the costs asso-
ciated with such control intensities may be considerable. The
effort during the initial transients is very sensitive to the control
intensity and tends to explode for very large control parameters
(see Fig. 7). Also, the asymptotic number of consecutive interven-
tions rises sharply once an upper bound of the control parameter
is exceeded (see Fig. 8a).

Our analytical results also reveal some properties that appear
useful from a practical point of view. First of all, there is an
activation threshold, which the population size has to surpass to
activate the control in the next generation (Corollary 2). This
property can be used to plan ahead in intervention programs.

Fig. 8. Contour plots of (a) the number of consecutive interventions and (b) the
total number of interventions as functions of the growth parameter and the ALC
intensity using a grey scale. White means zero interventions and black corresponds
to the maximum value found in each case, so intervention frequencies are higher in
darker than in lighter areas. The curves enclose the region where Condition (12) in
Proposition 1 (short red dashes) and Condition (8) of Theorem 1 (long yellow
dashes) hold. In both cases f ðxÞ ¼ x expð3ð1�x=60ÞÞ, the initial condition was chosen
as a pseudo-random number in the interval ½0; f ðdÞ�, and we considered a total of
1000 time steps with transients excluded. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this paper.)

D. Franco, F.M. Hilker / Journal of Theoretical Biology 337 (2013) 161–173 169



Furthermore, we have shown that, under easy-to-check condi-
tions, control interventions never occur in two consecutive gen-
erations inside the trapping region (Proposition 1), thus informing
intervention programs about the maximum frequency of pertur-
bations required. These are all very interesting properties, none of
which was known before, however.

6.3. Transient effects

Transient effects are often neglected in modelling, but they may
be actually as important as or even more relevant than the
asymptotic dynamics, because the latter may never be reached
in reality (Hastings, 2004). In this paper, we have identified three
different types of initial transients when applying ALC. They may
not only last over a long period of time, but they can also come
with a significant number of interventions and require a large
effort.

6.4. Determining the control intensity

Theorem 1 informs us how to choose the control intensity.
If we want to reduce the population fluctuations to a certain
magnitude, it gives us the critical value of the ALC intensity to
achieve this desired outcome. This is an advantageous property of
a control strategy, and is shared, for instance, by the strategies of
constant feedback (Gueron, 1998; Wieland, 2002), proportional
feedback (Liz, 2010) and target-oriented control (Franco and Liz,
2013).

In general, chaos control methods aim to stabilize chaotic
oscillations, no matter if its in form of a stable equilibrium point
or a stable periodic attractor (Schuster and Wiley, 1999). However,
it is often implicitly understood that the aim is a stable equili-
brium point or cycle (Silvert, 1978; Liz, 2010; Braverman and Liz,
2012). This cannot be achieved by ALC, because it is not able to
create an asymptotically stable population (Proposition 2).

In many situations the main aim of control is not stabilization,
but to steer the population size to a certain desirable range (Hilker
and Westerhoff, 2007b; Dattani et al., 2011) or to prevent the
population from reaching an undesirable range (Hilker and
Westerhoff, 2007a). There is actually a type of strategy called
chaos anti-control, because it avoids undesirable outcomes while
maintaining chaos, which may have some beneficial aspects in
itself (Yang et al., 1995).

Similar outcomes can be accomplished by ALC. This has been
alluded to by Sah et al. (2013, Section 2) in a verbal description, but
it remained unclear whether and how this could be achieved in
practice. In particular, it was an open question how to choose the
control parameter if the aim is to steer the population to a certain
part of the attractor. In this paper, we provide not only a rigorous
analysis of the dynamics, but also explain in detail how ALC can be
used for different aims. In fact, we describe a recipe how to choose
the control intensity if we want to avoid small population sizes
(close to extinction); prevent large population sizes (correspond-
ing to outbreaks); or restrict the population sizes in a range of
certain diameter (see the examples in Fig. 5).

Note that ALC prescribes a perturbation to the population when
a crash has already happened. This is a different approach to the
strategy in Hilker and Westerhoff (2007a), which uses available
time series data to prevent a crash happening in the first place.

The recipes for choosing appropriate control intensities com-
plement the (i) lower and (ii) upper bounds, which arise from ALC
being (i) effective (see Theorem 1) and (ii) not too costly in the
long-term (see Proposition 1) and in the short-term (see Fig. 7).

6.5. Global behaviour

We have shown that the trapping region imposed by ALC is
globally asymptotically stable. That is, all (rather than just a few or
nearby) initial conditions will end up in the trapping region. This is
a useful property for a control strategy and is shared by, for
instance, proportional feedback (Liz, 2010) and prediction-based
control (Liz and Franco , 2010). However, there are also strategies
that are only locally stable (e.g. constant feedback control; Gueron,
1998), or that can be either locally or globally stable depending on
parameter values (e.g. targetoriented control; Dattani et al., 2011;
Franco and Liz, 2013).

6.6. Conclusion

We have provided a mathematically rigorous basis for the
stabilizing effect of ALC. This control method comes with a
number of useful properties, such as inducing global stability or
having the capability to steer the system to (or away from) certain
(un-)desirable states. In fact, we have shown how to calculate the
control intensity required for such behaviour. On the downside,
there are a few caveats. For small values of the control parameter,
ALC may not be effective (or even counter-productive if we
consider a different stability measure). And for very large values
of the control parameter, ALC can be costly in terms of interven-
tions and effort. Hence, intermediate control intensities appear to
be generally a ‘safe’ choice. However, there may different priorities
depending on the context and specific aims of the control. Our
analytical results provide some guidance how to choose to the
control intensity depending on different situations. Note that we
also take into account transient effects and classify three different
types of initial transients.
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Appendix A. Proofs of the analytical results

Here we prove the results stated along the paper. To make this
appendix self-contained, we recall that we are considering the
following conditions:

(C1) f : ½0; b�-½0; bÞ (b¼1 is allowed) is continuously differenti-
able and such that f ð0Þ ¼ 0 and f ðxÞ40 for all xA ð0; bÞ.

(C2) f has two nonnegative fixed points x¼0 and x¼ K40, with
f ðxÞ4x for 0oxoK , and f ðxÞox for x4K .

(C3) f has a unique critical point doK in such a way that f ′ðxÞ40
for all xAð0; dÞ, f ′ðxÞo0 for all x4d, and f ′ð0þ Þ; f ′ðb�ÞAR.

Additionally, we recall that Eq. (1) controlled by ALC follows a
dynamical system determined by the system of difference equa-
tions

btþ1 ¼ f ðatÞ;
atþ1 ¼maxff ðatÞ; c � atg;

(
ðA:1Þ

where cAð0;1Þ is the ALC intensity.
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Our first result shows that ALC cannot create an asymptotically
stable equilibrium.

Proposition 2. Assume that (C1) and (C2) hold and that the fixed
point K is unstable for the uncontrolled system (1). Then, independent
of the magnitude of ALC, cAð0;1Þ, the controlled system (A.1) has no
asymptotically stable equilibria.

Proof. Clearly, ðx; yÞA ½0; b� � ½0; b� is an equilibrium of system (A.1)
if and only if it satisfies

x¼ f ðyÞ;
y¼max f ðyÞ; c � y� �

:

(

By Condition (C2), the controlled system has at most two equili-
bria, ð0;0Þ and (K,K).
Next, we must show that no equilibrium is asymptotically stable.

The trivial equilibrium is not asymptotically stable. Let (x,y) be in
the neighbourhood ½0;KÞ � ½0;KÞ of ð0;0Þ. Since by Condition (C2)
we have f ðyÞ4y for 0oyoK , the second equation of system (A.1)
is given by the equation

atþ1 ¼ f ðatÞ ðA:2Þ
in ½0;KÞ � ½0;KÞ. And conditions (C1) and (C2) imply that the trivial
equilibrium is unstable for Eq. (A.2).
Now, let us consider the nontrivial equilibrium (K,K). By the

continuity of f, it is possible to find a small enough neighbourhood,
N , of K such that

maxff ðyÞ; c � yg ¼ f ðyÞ
for ðx; yÞAN �N . Therefore, the second equation of system (A.1) is
given by Eq. (A.2) in N �N . Since we are assuming that K is
unstable for such an equation, we obtain that (K,K) is unstable for
the controlled system (A.1). □

A consequence of the following results is that the graph of the
map defining the dynamics of the population under ALC has to be
similar to the one plotted in Fig. A1. In this figure, we have
included elements that could help the reader to visually under-
stand the previous and the following proofs.

We define the activation threshold AT as the positive solution of
the equation

c � x�f ðxÞ ¼ 0: ðA:3Þ
The following results show that AT is well defined under

general conditions.

Lemma 1. Assume that (C1)–(C3) hold. If b¼ þ1 or f ðbÞ ¼ 0, then
Eq. (A.3) has a unique positive solution for any cA ð0;1Þ.

Proof. Firstly, we note that Eq. (A.3) has no solutions in the
interval ð0;KÞ by Condition (C2). Next, we have that

c � K�f ðKÞ ¼ c � K�K ¼ ðc�1Þ � Ko0:

Additionally, the assumption that b¼ þ1 or f ðbÞ ¼ 0 and Condi-
tion (C3) imply

lim
x-b

c � x�f ðxÞ40:

Therefore, the existence of AT follows by Bolzano's Theorem and its
uniqueness is a consequence of Condition (C3). □

Lemma 2. Assume that (C1)–(C3) hold. If bo1 and f ðbÞ40, then
Eq. (A.3) has a unique positive solution if and only if cA ðf ðbÞ=b;1Þ.
Moreover, applying ALC with an intensity smaller than f ðbÞ=b does

not modify the uncontrolled system (1).

Proof. The proof of the first affirmation is similar to the proof of
the previous result, so we omit it.
The second affirmation follows by noting that, if 0oco f ðbÞ=b,

the graph of f is above the straight line y¼ c � x, which delimits the
region where ALC does not modify the population. □

Using the activation threshold we can write the map defining
the dynamics of ALC in the following way.

Corollary 1. Assume that (C1)–(C3) hold and cA ð0;1Þ is such that AT

exists. Then the map describing the dynamics of at,

gðxÞ ¼maxff ðxÞ; c � xg;
can be rewritten as

gðxÞ ¼
f ðxÞ; xrAT ;

c � x; x4AT :

(
ðA:4Þ

The graph of the map g appears in Fig. A1.
A direct consequence of the previous corollary is the following

result, which establishes that for the maps satisfying (C1)–(C3) the
activation threshold has the role described by its name.

Corollary 2. Assume that (C1)–(C3) hold and cA ð0;1Þ is such that AT

exists. Then ALC acts in generation t if and only if at�14AT .

We are in the position to prove our main analytical results,
Theorem 1 and Proposition 1. We restate then here for completeness.

Theorem 2. Assume that (C1)–(C3) hold. Additionally, suppose that
for a fixed cAð0;1Þ the activation threshold AT exists and satisfies the
inequality

drc � AT ;

where d is the population size generating the maximum offspring,
cf. (C3).
Then, applying ALC with intensity c confines the population sizes at

and bt into the following intervals around the carrying capacity K:

Ia≔½c � AT ; f ðc � AT Þ� and Ib≔f ðIaÞ;
for any x0A ð0; bÞ.

Proof. Firstly, note that the interval

Ia ¼ ½c � AT ; f ðc � AT Þ�
is well defined because, in the conditions of the theorem, f is
decreasing in the interval ½c � AT ; bÞ. Therefore, using the definition
of AT and the monotonicity of f, we have

f ðc � AT ÞZ f ðAT Þ ¼ c � AT :

Fig. A1. Graph of the map g defining the dynamics of the population sizes after
ALC. For population sizes lower than or equal to AT, it coincides with the graph of
the uncontrolled map f; and for population sizes greater than AT, it coincides with
the straight line c � x.
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Since K ¼ f ðKÞ and KA ½c � AT ;AT �, a similar argument to the pre-
vious one shows that K belongs to Ia, and consequently also to Ib, as
affirmed in the result.
Next, note that it is enough to show that the population size

after ALC, at, is confined to the interval Ia, because bt ¼ f ðatÞ and
Ib ¼ f ðIaÞ. We consider several cases depending on the relative
position of a0, the initial population size after ALC, with respect to
the activation threshold.

1. Firstly, we assume that a0A ½c � AT ;AT �. Using the definition of AT

and the monotonicity of f on ½c � AT ;AT � � ½d; b�, we have that

f ðc � AT ÞZa1 ¼ f ða0Þ ¼maxff ða0Þ; c � a0g
Z f ðAT Þ ¼ c � AT :

Therefore, the iterate a1 belongs to Ia.
2. Next, we assume that a0A ðAT ; bÞ. We are going to show that

there exists a natural number n such that anA ½c � AT ;AT �, and
thus anþ1A Ia by the previous case.
Suppose that at =2½c � AT ;AT � for all t. We have that c � AT r
a1 ¼ c � a0, which together with a1 =2½c � AT ;AT � implies that
a1A ðAT ;bÞ. The same argument shows that if akA ðAT ; bÞ, then
akþ1AðAT ; bÞ. By induction, we have that

atA ðAT ; bÞ ðA:5Þ
for all t. Moreover, we obtain that at ¼ ct � a0, which implies

at-0 ðA:6Þ
as t tends to infinity. Since (A.5) and (A.6) are contradictory, we
obtain, as we desire, that there exists n such that anA ½c � AT ;AT �.
And thus by the first case, anþ1A Ia.

3. Next, we assume that a0A ½d; c � AT Þ. Then, by the monotonicity
of f, we have c � AT rKr f ðc � AT Þra1 ¼ f ða0Þob. And this case
can be reduced to one of the previous two cases.

4. Finally, we assume that a0Að0; dÞ. We are going to show that
there exists a natural number n such that anA ½d;bÞ, and therefore
this case can be reduced to one of the previous three cases.
Suppose that atA ð0; dÞ for all t. Using Condition (C2) and reasoning
by induction, one has that the sequence at is increasing and
bounded. Therefore, it is convergent to lA ð0; d�. On the other
hand, the continuity of f, and the fact that in this case atþ1 ¼
f ðatÞ ¼maxff ðatÞ; c � atg, implies f ðlÞ ¼ l, which contradicts that the
only fixed points of f are 0 and K4d. Therefore, our supposition is
false and there exists an n such that anA ½d; bÞ.

Therefore, we have that for any positive initial condition the
solution enters the trapping region Ia ¼ ½c � AT ; f ðc � AT Þ� in a finite
number of time steps. Finally, we show that Ia is invariant under
ALC, and thus the solution remains in Ia once it enters this interval.
If f ðc � AT ÞrAT and atA Ia, then atþ1 � Ia by the previous case 1; for
the same reason, if f ðc � AT Þ4AT and atA Ia with atrAT , then
atþ1 � Ia; and if f ðc � AT Þ4AT and atA Ia with at4AT , then, by
Corollary 1, we have atþ1 ¼ c � atA Ia. □

Proposition 3. Assume that conditions of Theorem 2 hold and that,
in addition, the following inequality holds

c � f ðc � AT ÞoAT : ðA:7Þ
Then ALC never acts consecutively if the population size is inside the
trapping region (9).

Proof. First, we point out that by Corollary 2 the necessary
condition for ALC to act consecutively in generations tþ1 and
tþ2 is that

at4AT and atþ14AT :

Now suppose that at4AT . We are going to prove that under
Condition (A.7) inequality atþ1rAT always holds.

By Corollary 1 we have that atþ1 ¼ c � at and since atA Ia ¼
½c � AT ; f ðc � AT Þ�, we obtain that

atþ1rc � f ðc � AT Þ:
And Condition (A.7) imposes that atþ1 cannot be greater than
AT. □

The following result about the possible initial transients of ALC
is a direct consequence of the proof of Theorem 2 and the
definition of ALC.

Corollary 3. Assume that (C1)–(C3) hold and cA ð0;1Þ is such that AT

exists. If the positive initial population size is outside the trapping
region defined in Theorem 1, then only one of the following initial
transients before reaching the trapping region is possible:

(a) There is no control until reaching the trapping region. The
population sizes bt and at coincide and increase during this
transient.

(b) ALC acts consecutively until reaching the trapping region. The
population size bt increases and the population size at decreases.
Moreover, the length of this initial transient is at most N with N
being the smallest natural number satisfying
AT rcN � f ðdÞ:

(c) There is a mixture of (a) and (b) with two sub-transients. First, as
in (a), there is a certain number of time steps without having to
apply ALC, in which the population increases but does not enter
the trapping region. This sub-transient finishes when at surpasses
the activation threshold AT. After that, and as in (b), ALC acts
consecutively until reaching the trapping region. The maximum
length of the second sub-transient is the same as in case (b).
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