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a b s t r a c t

Predator interference is a form of competition between predator individuals over access to their
prey. There is broad empirical evidence for interference to exist in different strengths in various
types of ecological communities. At the same time, parasites are increasingly recognized to alter
food web structure and dynamics. In order to investigate the eco-epidemiological interplay between
interference and infection, we develop and analyze mathematical models of a predator–prey system,
where the predators are subject to both interference and infectious disease. In the absence of infection,
equilibrium predator density is known to show a non-monotonic response to interference by first
increasing and then decreasing with increasing interference levels. We show that predator infection
can change this pattern into a monotonically decreasing predator response to interference, provided
the transmissibility is large enough and the pathogenicity is moderate such that the impact of disease
on host population density prevails over interference effects. This holds for both types of disease
transmission studied here, density-dependent and frequency-dependent. For density-dependent trans-
mission, we find that intermediate values of interference can facilitate disease persistence, whereas the
disease would disappear for small or large interference levels. By contrast, for frequency-dependent
transmission, disease emergence is independent of interference levels. These dynamic interactions may
be important for the understanding of potential biocontrol measures and of spread patterns of zoonotic
diseases.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Parasites affect not only their host population but also species
with which their hosts interact directly or indirectly (Anderson
and May, 1986; Hatcher and Dunn, 2011; Sieber and Hilker,
2011). For example, in biological control parasites are introduced
into populations of invasive predators with the aim of protecting
endangered prey (e.g. controlling cats on Marion Island to rescue
sea birds; Courchamp et al., 1999; Nogales et al., 2004). Similarly,
predators can be used in population management to control the
emergence of infectious diseases in prey hosts (Packer et al.,
2003). As an example, predators can reduce rodent populations
below critical levels for zoonotic diseases such as Lyme disease
and hantavirus (Ostfeld and Holt, 2004).

Much of ecological food web theory rests on predator–prey
interactions with so called prey-dependent functional responses
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(Arditi and Ginzburg, 1989), i.e. the consumption rate per indi-
vidual predator is assumed to depend only on prey density. Has-
sell and Varley (1969) showcased that a functional response
decreases with the density of predators, and by now there is
compelling empirical evidence for predator-dependent functional
responses (e.g. Skalski and Gilliam, 2001; Kratina et al., 2009;
DeLong and Vasseur, 2011; Zimmermann et al., 2015; Novak
et al., 2017), the degree of which may depend on species and
ecosystems. Many mechanisms have been proposed that can
lead to a predator-dependent functional response, e.g. social
interactions amongst predators (Abrams and Ginzburg, 2000), ag-
gressive behavior resulting from population structure and
cannibalism (Crowley and Martin, 1989; Rudolf, 2007), spatial
aggregation of predators (Cosner et al., 1999), hunting coop-
eration (Teixeira Alves and Hilker, 2017), and intensified an-
tipredator behavior of the prey (Crowley and Martin, 1989; Lima,
2009).

If the functional response decreases (respectively increases)
with predator density, there is predator interference (respectively
facilitation). The dynamic interplay of predator facilitation and
transmission of a pathogenic predator disease has recently been
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modeled mathematically by Hilker et al. (2017). They considered
that facilitation was brought about by hunting cooperation and
found the following distinction in outcomes. If predator coopera-
tion is low and disease transmissibility is high, then the impact of
infection in the sense of driving the host population extinct pre-
vails over cooperation. However, if cooperation is strong enough,
predator facilitation can mediate predator survival independently
of the strength of the disease. That is, for invasive predators that
cooperate strongly, biocontrol by releasing parasites alone may
not be sufficient.

In this paper, we investigate the impact of predator interfer-
ence on predator–prey systems with infectious diseases
circulating in the predator population. Interference is a form of
competition between individuals that occurs when the access to
resources (e.g., prey) is reduced by aggressive or passive interac-
tions with other individuals. This is sometimes called foraging in-
terference or, if interference occurs between conspecifics, mutual
interference. Here we will focus on the dynamic feedbacks caused
by predator mutual interference and infection. One might expect
that interference reduces predator population density—and thus
also impedes density-dependent disease transmission. However,
the impact of interference is not as simple as that. In basic
predator–prey models, the predator population density at equi-
librium increases with interference, provided that interference
is small. This has been shown numerically (for the Beddington–
DeAngelis functional response and logistic prey growth; DeAn-
gelis et al., 1975) and analytically (for the Hassell–Varley and
Beddington–DeAngelis functional responses and exponential prey
growth; Arditi et al., 2004). By contrast, if interference is large,
predator population density at equilibrium decreases with inter-
ference. The reason is that prey population density at equilibrium
increases with interference (DeAngelis et al., 1975; Arditi et al.,
2004); more food resources may thus supercompensate direct
predator losses due to interference.

The interaction between interference and infection is there-
fore far from trivial—especially because disease itself can also
regulate predator density and cascade to the prey level (Oliveira
and Hilker, 2010; Hatcher and Dunn, 2011). We will consider
two types of disease transmission, namely frequency-dependent
transmission (FDT) and density-dependent transmission (DDT).
Contact rates are independent of host population density in the
former and proportional to host population density in the latter.
These are two extremes in a continuum of possibilities, and the
truth for many species may be somewhere in the middle.

The paper is organized as follows. In Section 2, we intro-
duce our eco-epidemiological models. The functional responses
are derived using the approach of ‘‘wasting times’’, similarly
to Beddington (1975). We will assume that there is no difference
between susceptible and infected predators and that there is no
prey handling time, so that we can focus on the impact of only
predator interference.

Section 3 presents results from equilibrium and linear stability
analysis, which we will complement by numerical simulations. In
Section 4 we discuss our results and draw our conclusions.

2. Model description

2.1. Eco-epidemiological model

Consider a predator–prey system with an infectious disease
in the predator population. Let X , S, and I be the population
densities of prey, susceptible predators, and infected predators,

respectively, and τ be time. The mathematical model reads

dX
dτ

= r
(
1 −

X
K

)
X − fS(S, I, X)S − fI (S, I, X)I,

dS
dτ

= −mS − β(S, I) + eS fS(S, I, X)S + (1 − ν)eI fI (S, I, X)I,

dI
dτ

= −mI − µI + β(S, I) + νeI fI (S, I, X)I,

(1)

where fS(S, I, X) and fI (S, I, X) are generalizations of the
Beddington–DeAngelis functional response extended to multiple
predators types. They are derived in Appendix A and given by

fS(S, I, X) =
aSX

1 + aShSX + bSSwSSS + bISwIS I
,

fI (S, I, X) =
aIX

1 + aIhIX + bSIwSIS + bIIwII I
,

(2)

where aS and aI are the search rates and hS and hI the prey
handling times of susceptible and infected predators, respec-
tively. bSS is the encounter rate between susceptible predators, bII
between infected predators, bSI between susceptible and infected
predators, and bIS between infected and susceptible predators.
wSS, wII , wSI , and wIS are the respective wasting times during
these encounters.

The prey population grows logistically with intrinsic per-
capita growth rate r and carrying capacity K . The prey is con-
sumed by both susceptible and infected predators. The conversion
efficiencies of susceptible and infected predators are eS and eI ,
respectively. The model accounts for vertical transmission of the
predator disease: ν ∈ [0, 1] is the fraction of offspring that
get infected from the parent. For ν = 0, there is no verti-
cal transmission while for ν = 1 there is complete vertical
transmission.

The predators are specialists and they have a natural per-
capita death ratem. Infected predators have an additional disease-
related per-capita mortality µ, henceforth called pathogenicity.
There is no recovery from the disease. Function β(S, I) describes
horizontal disease transmission. In the case of density-dependent
transmission (DDT),

β(S, I) = βSI,

and in the case of frequency-dependent transmission (FDT),

β(S, I) =
βSI
S + I

.

Note that the transmission parameter β has different dimensions
for DDT and FDT.

2.2. Simplifying assumptions and non-dimensionalization

Due to the large number of parameters, we will make some
simplifying assumptions. We start by assuming that suscepti-
ble and infected predators do not differ in their wasting times,
handling times, encounter rates, and conversion efficiencies. This
assumption may be well justified if the infection does not change
predator behavior. We also assume that the predator encounter
rates equal the rates with which predators find prey; this is likely
to be the case unless predators detect each other at different
distances than they detect prey (Turchin, 2003). More specifically:

w := wSS = wIS = wSI = wII ,

a := bSS = bIS = bSI = bII ,
h := hS = hI , a := aS = aI , e := eS = eI .

In this case, susceptible and infected predators have the same
functional response, and both fS(S, I, X) and fI (S, I, X) simplify to
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the Beddington–DeAngelis functional response

f (X, Y ) =
aX

1 + ahX + awY
. (3)

If we additionally assume that the handling times are negli-
gible (h = 0), then the functional response further simplifies to

f (X, Y ) =
aX

1 + awY
. (4)

This functional response has also been derived by Beddington
(1975); see also Turchin (2003, pp. 84). It has been used before
to focus on the effect of predator interference rather than on
the effect of prey handling times (Bate and Hilker, 2012). We
shall also consider it in the remainder of this paper. We have
done some analysis and simulations also for the full Beddington–
DeAngelis functional response (3), but as we did not find signifi-
cant differences in our results, we chose to focus on the simpler
version.

Before analyzing model (1) with functional response (4), we
apply a coordinate transformation and nondimensionalize the
equations. We substitute S and I by the total predator population
density Y = S + I and the prevalence of predator infection,
i = I/Y . Then we can write the system (1), (4) as

dX
dτ

= r
(
1 −

X
K

)
X −

aXY
1 + awY

,

dY
dτ

= −mY − µYi +
eaXY

1 + awY
, (5)

di
dτ

= i
(

−µ(i − 1) + β(i, Y ) −
eaX(1 − ν)
1 + awY

)
,

where

β(i, Y ) = βi(1 − i)Y for FDT and

β(i, Y ) = βi(1 − i)Y 2 for DDT.

We now nondimensionalize system (5) by applying the substitu-
tions

N(t) =
1
K
X(τ ), P(t) =

a
r
Y (τ ) and t = rτ .

Defining

Kea
r

:= ã,
m
Kea

:= m̃,
µ

Kea
:= µ̃,

β

Kea
:= β̃,

and rw := w̃,

we get (for simplicity of notation, we will drop the tildes)

dN
dt

= (1 − N)N −
NP

1 + wP
,

dP
dt

= a
(

−mP − µPi +
NP

1 + wP

)
, (6)

di
dt

= ia
(
(β − µ)(1 − i) −

N(1 − ν)
1 + wP

)
,

for FDT, while for DDT we get

dN
dt

= (1 − N)N −
NP

1 + wP
,

dP
dt

= a
(

−mP − µPi +
NP

1 + wP

)
, (7)

di
dt

= ia
(
(βP − µ)(1 − i) −

N(1 − ν)
1 + wP

)
.

Table 1
Summary of equilibria and stability of the FDT model (6) with h = 0. ∗ indicates
when equilibrium values of P , N , or i are different from zero. See Appendix B for
details and the definitions of A, B, and C . The reproduction numbers are given
in the main text.
E = (N, P, i) Feasibility conditions Stability conditions

E0 = (0, 0, 0) Always feasible Unstable
E1 = (∗, 0, 0) Always feasible RP

0,0 < 1 and Ri
0 < 1

E2 = (∗, 0, ∗) β − µ > 0 RP
0,i < 1 and Ri

0 > 1

E3 = (∗, ∗, 0) RP
0,0 > 1 R0,FDT < 1

E4 = (0, 0, ∗) Always feasible Unstable
E∗ = (∗, ∗, ∗) N∗ > 0, i∗ > 0, Routh–Hurwitz conditions

A < 0 and B or C < 0 or
A > 0 and B or C > 0

Fig. 1. Summary of the feasible and stable equilibria of the FDT model (6).

3. Results

3.1. Equilibria and stability analysis for FDT

In this section, we summarize the main results of the steady
state and stability analysis of the FDT model (6). See Table 1 and
Fig. 1 for an overview and Appendix B for details. We distinguish
the following nontrivial cases.

(i) Prey-only case The equilibrium where the disease cannot es-
tablish and the predators go extinct while the prey reach
their carrying capacity (in this case equal to 1 since the
model was scaled) is E1 = (N1 = 1, P1 = 0, i1 = 0).
It is always feasible. It is stable when the following two
conditions are satisfied. The first condition describes that
the predators cannot survive on the prey population and is
given by

RP
0,0 =

1
m

< 1. (8)

RP
0,0 is the ecological basic (indicated by the first 0 in the

subscript) reproduction number of the predator population
(indicated by the superscript) in the absence of infection
(indicated by the second 0 in the subscript). The numera-
tor is the (scaled) average offspring produced by a single
predator during its lifetime when introduced into a prey
population at carrying capacity (in dimensional terms this
is eaK ). The denominator is the scaled per-capita death
rate and is the reciprocal of the average predator lifetime.
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If RP
0,0 < 1, the ecological conditions are such that the

predators cannot sustain themselves on the prey and go
extinct.
The second stability condition describes that predator ex-
tinction is not due to infection. It is given by

Ri
0 =

β − µ

1 − ν
< 1.

This can be interpreted as the prevalence reproduction
number (Hilker and Schmitz, 2008; Oliveira and Hilker,
2010), as indicated by the i in the superscript. If Ri

0 < 1,
the infection dies out in the predator population before
the predators go extinct. If Ri

0 > 1, the infection remains
prevalent in the limit process as the predators approach
extinction. This leads to the next case.

(ii) Disease-induced predator extinction The equilibriumwhere
predators go extinct due to the disease and the prey reach
their carrying capacity is

E2 = (1, 0, i2) , i2 =
β − µ − (1 − ν)

β − µ
.

The strictly positive prevalence means that, as the preda-
tor density approaches zero in the extinction process, the
prevalence approaches the value i2. That is, the infection
sticks around in the extinction process and drives it for-
ward. In particular, the infection does not go extinct before
the predators do. E2 is feasible if β − µ > 1 − ν. There are
two stability conditions. The first one is

RP
0,i =

1
m + µi2

< 1.

RP
0,i is the ecological basic reproduction number of the

predators in the presence of disease (indicated by the i in
the second subscript position). In comparison with RP

0,0, the
difference is the shortened average predator lifetime due to
pathogenicity, which affects a proportion i2 of the preda-
tor population. If RP

0,i < 1, the predator population goes
extinct in the presence of disease. The second condition
is Ri

0 > 1, which guarantees that the infection prevalence
is positive as the predator population vanishes. Note that
disease-induced predator extinction is independent of the
interference strength w.
In the case of complete vertical transmission, ν = 1, we
have E2 = (1, 0, 1) and the feasibility condition is not
needed anymore.

(iii) Disease-free predator–prey case In the absence of disease,
the equilibrium where both prey and predators coexist is

E3 =

(
m(1 + wP3),

−(m − 1)w − mw − 1 +

√
4mw + (w − 1)2

2mw2 , 0

)
.

(9)

It is feasible if Ri
0 > 1. As E1 is unstable if Ri

0 > 1,
this suggests the possibility of a transcritical bifurcation
between these two equilibria. E3 is stable if

R0,FDT =
β + νm
m + µ

< 1.

R0,FDT is the basic reproduction number of the disease in
the predator population. It gives the number of secondary
infections caused by a single infected predator during its
infectious period when introduced into a completely sus-
ceptible population of density P3 and available prey N3,

Table 2
Summary of equilibria and stability of the DDT model (7) with h = 0. ∗ indicates
when equilibrium values of P , N , or i are different from zero. See Appendix C
for details. The reproduction numbers are given in the main text.
E = (N, P, i). Feasibility conditions Stability conditions

E0 = (0, 0, 0) Always feasible Unstable
E1 = (∗, 0, 0) Always feasible RP

0,0 < 1
E2 = (∗, 0, ∗) ν = 1 Unstable
E3 = (∗, ∗, 0) RP

0,0 > 1 R0,DDT < 1
E4 = (0, 0, ∗) Always feasible Unstable
E∗ = (∗, ∗, ∗) N∗ > 0, i∗ > 0 Routh–Hurwitz conditions

assuming that predators and prey are at these equilib-
rium densities. The mean infectious period of an infected
predator is the reciprocal of m + µ, which is the sum of
the dimensionless natural and disease-related per-capita
death rates. The secondary infections are due to horizontal
transmission, β and vertical transmission, νm.

(iv) Endemic coexistence case The equilibriumwhere predators
and prey coexist and the disease is endemic in the predator
population is given by

E∗ =

(
1 + (w − 1)P∗

1 + wP∗

, P∗,
β − µ − m(1 − ν)

β − µν

)
,

where P∗ is the positive root of a second-degree polyno-
mial. See Appendix B for details, including feasibility and
stability conditions.

It is noteworthy that the prevalence at E∗ does not depend
on the interference parameter w, i.e., ∂ i∗/∂w = 0. By con-
trast, the equilibrium prevalence decreases with increasing
pathogenicity µ, ∂ i∗/∂µ < 0. Finally,
∂ i∗
∂β

> 0 for µ > m,

∂ i∗
∂β

< 0 for µ < m.

That is, with increasing disease transmissibility β the
prevalence can increase or decrease, depending on the
strength of the pathogenicity relative to the natural mor-
tality.

A similar analysis of the impact of the infection and in-
terference parameters on N∗ and P∗ is algebraically too
involved, which is why we will investigate this numerically
in Section 3.4.

3.2. Equilibria and stability analysis for DDT

Now we summarize the main results for the DDT model (7).
See Table 2 for an overview and Appendix C for details. We
distinguish the following four cases.

(i) Prey-only case The equilibrium E1 where the predators go
extinct while the prey reach their carrying capacity is
E1 = (1, 0, 0). It is always feasible. It is stable if RP

0,0 <

1, where RP
0,0 is the predator basic reproduction number

in the absence of infection and is the same as in (8). In
contrast to FDT, there is only one stability criterion. This is
because disease-induced predator extinction is impossible
for DDT (density-dependent transmission vanishes when
the host population density approaches zero)—unless there
is complete vertical transmission; see the next case.

(ii) Disease-induced predator extinction The disease-induced
extinction state E2 is only feasible for complete vertical
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transmission, i.e., ν = 1. In this case, E2 = (1, 0, 1), and
it is always unstable.

(iii) Disease-free predator–prey case The disease-free equilib-
rium E3 where both prey and predators coexist is the same
as in the FDT case, see (9). While the feasibility condition is
also the same as for FDT, the stability condition is different
and given by

R0,DDT =
βP3 + νm
m + µ

< 1.

R0,DDT is the basic reproduction number of the disease for
DDT. In comparison to R0,FDT , the difference is that the sec-
ondary infections due to horizontal transmission depend
on the predator equilibrium density P3, given in (9). Note
that R0,DDT thus depends on the interference parameter w,
whereas R0,FDT is not affected by interference.

(iv) Endemic coexistence case The equilibrium E∗ where prey,
predators, and disease coexist is given by

E∗ =

(
1 + (w − 1)P∗

1 + wP∗

, P∗,
βP∗ − µ − m(1 − ν)

βP∗ − µν

)
,

where P∗ is the positive root of a third-degree polyno-
mial. See Appendix C for details, including feasibility and
stability conditions. Note that the equilibrium prevalence
depends on P∗. This means that for DDT the equilibrium
prevalence does depend on the interference parameter w.
This is different from FDT, for which the equilibrium preva-
lence is independent of predator interference.

3.3. Comparison between the models with FDT and DDT

In the absence of disease, the difference between FDT and DDT
obviously does not matter. This implies that the ecological basic
reproduction number of the predators (in the absence of disease)
is the same for FDT and DDT. We note the following differences
between the models with FDT and DDT.

(a) The basic reproduction number of the disease differs be-
tween FDT and DDT, because the number of secondary in-
fections depends on the predator population density for
DDT. Consequently, the spread of predator diseases can be
affected by predator interference due to its effect on popula-
tion density. This is clearly reflected by the analytical equi-
librium infection prevalence, which depends on predator
density and thus on interference for DDT, but is independent
of either for FDT.

(b) The disease-induced host extinction state E2 exists for DDT
only for the particular case of complete vertical transmission
and is always unstable. This is because disease transmis-
sion vanishes when the host population density approaches
small enough values. For FDT, by contrast, disease transmis-
sion goes on even at small host population densities, which
is why the disease-induced extinction state E2 is feasible and
stable in a certain parameter range. This is a well-known
difference between FDT and DDT (e.g. Getz and Pickering,
1983; Zhou and Hethcote, 1994; Hilker et al., 2009; Oliveira
and Hilker, 2010).

(c) Another difference concerns the analytical tractability of
the endemic coexistence equilibria. For FDT, we could find
analytical expressions for N∗, P∗, and i∗. For DDT, by contrast,
P∗ is the positive root of a third-degree polynomial, and the
expressions of N∗ and i∗ depend on it.

3.4. Numerical simulations

We now investigate the combined interplay of predator in-
terference w and transmissibility β by varying their parameter
values simultaneously. We will also analyze how the popula-
tion density levels at equilibrium behave when the two varying
parameters are predator interference w and pathogenicity µ.
We will first focus on population density levels at equilibrium
and then on (de-)stabilization brought about by infection and
interference.

3.4.1. Population densities at equilibrium
Fig. 2 shows the asymptotic population densities and infection

prevalence when the system has reached equilibrium. In the
absence of disease (left of dashed curves; R0,FDT < 1 and R0,DDT <

1), predators and prey coexist at stable equilibria. For a fixed
value of w in this parameter region, the asymptotic population
densities of predators and prey naturally do not change when
varying β . For a fixed value of β in the disease-free region, the
asymptotic predator population density increases (respectively
decreases) with increasing w when interference is low (respec-
tively high). The asymptotic prey population density always in-
creases with w. These asymptotic behaviors are the same for FDT
and DDT.

Disease invasion into the predator–prey state is independent
of predator interference for FDT and occurs for a fixed value of β

(R0,FDT = 1; vertical dashed line). For DDT, the disease invasion
threshold depends on both β and w (R0,DDT = 1; dashed curve).
In particular, for a fixed value of β around 1.5, the disease dies out
for small w, establishes for intermediate w, and dies out again for
large w.

When the disease is endemic and predators and prey coexist
(right-hand side of the dashed curves in Fig. 2), the impact of w

on the asymptotic predator density translates from the disease-
free into the endemic case, provided the transmissibility is not
too large. That is, for intermediate ranges of β , the asymptotic
predator densities initially increase and then decrease with w. See
Fig. 3 for a zoomed-in diagram. For large values of β , by contrast,
the asymptotic predator densities always decrease with w. The
asymptotic prey densities also always increase with w, just as in
the disease-free case. This holds for both FDT and DDT.

When increasing β in the endemic parameter region, asymp-
totic prey densities monotonically increase and asymptotic preda-
tor densities monotonically decrease. This holds again for both
FDT and DDT. The asymptotic infection prevalence increases
monotonically with β . For FDT, the prevalence is independent
of w. For DDT, the infection prevalence can initially increase but
then decreases with w, provided that transmissibility is low. For
larger transmissibilities, the prevalence always decreases with w.

For FDT disease-induced extinction occurs for large values
of β , independently of w (solid red line in Fig. 2). This is not
possible for DDT.

In Fig. 4, we vary the pathogenicity µ rather than the disease
transmissibility. The maximum depression of equilibrium preda-
tor host population size occurs for moderate values of µ. This
holds for FDT and DDT (Figs. 4c and d, respectively). Small values
of µ have little effect on the host population size, whereas large
values of µ cause the eradication of the infection (Figs. 4e, f). This
happens because infected individuals die more quickly than they
can spread the disease. As a consequence, the equilibrium preda-
tor population density increases with large values of µ. Hence,
low to moderate levels of µ are most effective in depressing host
population size. In parameter regions where the predator hosts
are less abundant, the prey population increases in size and vice
versa (Figs. 4a, b).
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Fig. 2. Long-term values of the prey (top row, panels (a) and (b)), predators (middle row, panels (c) and (d)), and predator infection prevalence (bottom row, panels
(e) and (f)) in the FDT (left column) and DDT (right column) model, obtained from numerical solutions of (6) and (7), respectively. On the left-hand side of the
dashed black–white line (R0,FDT = 1 and R0,DDT = 1) the system is at the disease-free predator–prey equilibrium. Disease-induced predator extinction is possible
only in the FDT model and occurs on the right-hand side of the solid red line (RP

0,i = 1). Parameter values a = 5.0, m = 0.3, µ = 1, and ν = 0.5. Initial conditions:
N(0) = 1, P(0) = 1, i(0) = 0.6.

When the predator infection is endemic, increasing interfer-
ence can have two different qualitative effects on the equilibrium
predator host density (Fig. 4c, d). For moderate values of µ, in-
creasing interference always decreases the equilibrium predator
density. For very small and large values of µ (approximately 0 <

µ ≲ 0.1 and shortly before the disease persistence threshold

shown in dashed line, respectively), the equilibrium predator
density exhibits a non-monotonic response to interference by
first increasing and then decreasing with w. In comparison to
Fig. 2, where we varied transmissibility β , there are now two
parameter regions with a non-monotonic host density response
to interference; one of these regions is again close to the disease
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Fig. 3. A zoomed-in version of the asymptotic predator densities from Fig. 2, on the left-hand side of the frequency-dependent model as in Fig. 2 panel (c) and on
the right-hand side of the density-dependent model as in Fig. 2 panel (d).

persistence threshold, and it is separated from the other one
at very small values of µ by a wide parameter region with a
monotonically decreasing predator response to interference.

The response of equilibrium prey density and predator infec-
tion prevalence to increasing interference is the same as in Fig. 2.
That is, the equilibrium prey density monotonically decreases
with w (Fig. 4a, b). In the case of FDT, prevalence is independent
of w (Fig. 4e). In the case of DDT, there can be a transition of the
disease being absent–present–absent with increasing w (Fig. 4f).

3.4.2. (De-)stabilizing effects
The disease-free predator–prey system corresponds to the

Lotka–Volterra model with prey self-regulation. In the absence of
disease (R0,FDT < 1 or R0,DDT < 1), the predator–prey coexistence
equilibrium is therefore always globally asymptotically stable, if
it exists. Upon disease invasion, the predator infection can first
destabilize and then stabilize the system with increasing disease
transmissibility. This is illustrated in Fig. 5 for both the FDT and
DDT model. Increasing disease transmissibility induces a Hopf
bifurcation if transmissibility is intermediate. As a consequence,
the nontrivial equilibrium of prey and susceptible as well as
infected predators gets destabilized, and limit cycles emerge. For
a larger transmissibility value, however, there is another Hopf
bifurcation, in which the limit cycles oscillations disappear and
the nontrivial equilibrium gets stabilized. Hence, there is param-
eter region with intermediate transmissibility values leading to
dynamic instability (hatched areas in Fig. 5).

With increasing interference strength, the parameter region of
instability becomes smaller. If the system exhibits limit cycles,
they disappear in a Hopf bifurcation for increasing interference
values. If predator interference is sufficiently strong, no limit
cycles occur for all transmissibility values investigated (Fig. 5).

4. Discussion and conclusions

In this paper, we have developed and analyzed dynamic eco-
epidemiological models to investigate the mutual feedbacks be-
tween predator interference and disease transmission in the
predator population. Let us first discuss the impact of interfer-
ence on the spread of predator diseases. Whether or not there
is an effect, depends on the type of disease transmission. For
FDT, we have shown analytically that interference influences
neither disease emergence, nor equilibrium prevalence levels, nor
disease-induced host extinction. This is plausible because contact
rates in FDT are assumed to be independent of host population
density and thus do not depend on interference.

For DDT, by contrast, interference affects the basic reproduc-
tion number and thus disease invasion. One major finding of our

numerical experiments is that the transmissibility required for
disease emergence is lowest for intermediate interference values.
The highest pathogenicity level that can sustain an endemic infec-
tion occurs also for intermediate interference values. For smaller
and larger interference values, disease emergence requires larger
transmissibilities or lower pathogenicities. Similarly, asymptotic
predator infection prevalences in our simulations are highest for
intermediate interference values.

In other words, our results suggest that disease invasion can
be facilitated by intermediate interference levels in the case of
DDT. That is, ecological systems that favor low or high levels
of interference are more likely to remain disease-free. This may
be important for the understanding and prevention of epizootics
and spillovers from zoonotic diseases. For example, if the aim
is to avoid disease emergence, management actions could take
this into account, e.g. by distributing (alternative) resources or
designing dispersal corridors in ways that tend to enhance or
alleviate interference interactions. DDT is typical for directly or
environmentally transmitted diseases, but we would expect these
results to hold also for other transmission functions that are a
mixture between DDT and FDT (density-dependent at low host
densities, frequency-dependent at high host densities; McCallum
et al., 2001; Berec et al., 2017).

The underlying reason for these results is the non-monotonic
response of equilibrium predator density to interference, with a
maximum at intermediate interference values (DeAngelis et al.,
1975; Arditi et al., 2004). This may seem counterintuitive as one
might expect that predator density decreases with increasing
interference. However, the negative direct effect of interference
on predators can be supercompensated by a positive indirect
effect on the prey, as equilibrium prey density increases with
interference. The impact of interference on population densities
is not that often considered though; most papers about preda-
tor interference focus on stability and limit cycles (DeAngelis
et al., 1975; Alonso et al., 2002; Arditi et al., 2004; Rall et al.,
2008; Berec, 2010; Li and Takeuchi, 2011), the derivation of
the functional response (Beddington, 1975; Ruxton et al., 1992;
Huisman and de Boer, 1997), or empirical evidence of predator-
dependent functional responses (Hassell and Varley, 1969; Skalski
and Gilliam, 2001; Kratina et al., 2009; DeLong and Vasseur, 2011;
Zimmermann et al., 2015).

Let us now discuss the impact of disease on population den-
sities and persistence. Another major finding in our numerical
simulations is that the non-monotonic response of predators to
interference also occurs in the presence of disease, provided
the disease is not too ‘strong’, i.e., transmissibility is low and
pathogenicity is large or very low. In these cases, predators can
still benefit from increased interference even though they ad-
ditionally suffer from increased pathogenicity. However, if the
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Fig. 4. Long-term values of the prey (top row, panels (a) and (b)), predators (middle row, panels (c) and (d)), and predator infection prevalence (bottom row, panels
(e) and (f)) in the FDT (left column) and DDT (right column) model, when varying pathogenicity and predator interference strength. Results obtained from numerical
solutions of (6) and (7), respectively. On the left-hand side of the dashed black–white line (R0,FDT = 1 and R0,DDT = 1) the system is at the disease-free predator–prey
equilibrium. Parameters values a = 5.0, m = 0.3, β = 2, and ν = 0.5. Initial conditions: N(0) = 1, P(0) = 1, i(0) = 0.6.

disease markedly depresses host population size due to high
transmissibility or moderate pathogenicity, we do not observe
the non-monotonic response of predators to interference; in-
stead, equilibrium predator densities always decrease with in-
terference. That is, large enough disease transmission or extreme
pathogenicity levels at the low or high end drive the system into a
state where predators cannot benefit anymore from interference

but are always impeded by the interplay of interference and
infection. In some sense, the extra mortality due to disease always
outweighs the potential benefit of interference in the form of
increased prey population size and decreases competition for it.
These observations hold for both FDT and DDT.

These results are consistent with well-known theory on bio-
logical control (Anderson and May, 1979; Anderson, 1979), when
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Fig. 5. Two-parameter bifurcation diagrams of (left) the FDT model (6) and (right) the DDT model (7), obtained by numerical continuation. In the hatched parameter
region, there are nontrivial limit cycles. The blue bold curves mark Hopf bifurcations, the black dashed curves mark transcritical bifurcations indicating disease
emergence (R0 = 1), and the red solid curve marks a transcritical bifurcation indicating disease-induced predator extinction in the FDT model. Parameter values:
(left) a = 10.0, m = 0.5, µ = 2, ν = 0.1. (right) a = 5.0, m = 0.01, µ = 0.5, ν = 0.

the aim is to regulate predators that are pests by introducing
parasites. The parasites should not be too strong to maintain
transmission over a long period of time, but they should not be
too mild in order to avoid positive effects of interference on the
host population.

Predator extinction due to infection is never possible for DDT,
even with predator interference. For FDT, we have shown analyt-
ically that predator interference does not alter the condition for
disease-induced predator extinction. For FDT, equilibrium prey
densities always decrease with interference also in the pres-
ence of disease. For DDT, this is also the case in our numerical
simulations.

We have also investigated how infection and interference
affect system stability. In our simulations, interference had a
stabilizing effect. That is, if there were limit cycle oscillations in
the eco-epidemiological system, they were stabilized to asymp-
totically stable equilibrium points when increasing interference
strength. This is consistent with the generally stabilizing effect
attributed to predator interference in the literature (DeAngelis
et al., 1975; Ruxton et al., 1992; Huisman and de Boer, 1997;
Arditi et al., 2004; Berec, 2010). The (limited) simulations in this
paper suggest that sufficiently strong interference overrides in-
stabilities that may arise from combined infection and predation
dynamics, for all values of the transmissibility.

In our simulations predator infection has been found capable
of both destabilizing and re-stabilizing predator–prey systems.
This is also consistent with the literature. On the one hand,
predator infections have been reported to destabilize locally sta-
ble predator–prey equilibria for transmissibilities of intermediate
level (Stiefs et al., 2009; Oliveira and Hilker, 2010; Bate and
Hilker, 2013). On the other hand, infectious diseases in predators
have been reported to stabilize unstable predator–prey systems
for sufficiently large transmissibilities (Hilker and Schmitz, 2008;
Oliveira and Hilker, 2010).

Predator–prey models like the one considered here are the
building blocks for more complex food webs, and the meta-
analysis of empirical data by DeLong and Vasseur (2011) suggests
that predator interference is common. The importance of par-
asites in modifying entire community structures is increasingly
recognized (Wood et al., 2007; Hatcher and Dunn, 2011). The re-
sults from this paper indicate that infection may alter population
responses to interference and that interference in turn can influ-
ence infection levels and even alter disease invasion. Our models
predict these effects for intermediate interference levels. There is
little consensus in the literature about the strength of predator
interference, except that it varies with prey and predator species,
ecosystem context, and even predator density itself (Holdridge
et al., 2016). DeLong and Vasseur (2011, p. 1) concluded that
‘‘interference is mostly intermediate in magnitude’’, but they

measured interference magnitude in terms of a Hassell–Varley
exponent; this stipulates the question whether their empirical
findings can be translated into intermediate interference values
in terms of our model.
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Appendix A. Functional response derivation

In this appendix, we will formulate the functional responses
of predators. Similarly to Beddington (1975), we will take into
account prey handling times and time wasted due to predator
interference, but we will extend this derivation to multiple types
of predators according to their infection status.

We assume that there are two types of predators, susceptible
and infected ones with densities S and I , respectively. Let Y =

S + I be the total predator population density and X the prey
population density. Further assume that susceptible predators
spend their total time budget T S either searching for prey (T S

s ),
handling prey (T S

h ), or waste their time interfering each other
(T S

w). We assume the same for infected predators (for which the
superscripts are replaced by I). Then

T S
= T S

s + T S
h + T S

w,

T I
= T I

s + T I
h + T I

w.

The overall time spent by susceptible and infected predators to
handle prey is, respectively,

T S
h = aSXT S

s hS,

T I
h = aIXT I

s hI .
(10)

It is proportional to the density of prey caught during the search-
ing time, where aS and aI are the rates at which susceptible
and infected predators, respectively, find prey. hS and hI are
the prey handling times of susceptible and infected predators,
respectively.

The overall time wasted by susceptible and infected predators
when encountering other predators is, respectively,

T S
w = (bSSSwSS + bIS IwIS)T S

s ,

T I
w = (bSISwSI + bII IwII )T I

s .
(11)

It is proportional to the density of susceptible and infected preda-
tors encountered during the searching time, where bSS and bIS
are the rates at which susceptible predators encounter suscep-
tible and infected ones, respectively. Similarly, bSI and bII are
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the rates at which infected predators encounter susceptible and
infected ones, respectively. wSS and wIS are the times wasted
by susceptible predators when encountering susceptible and in-
fected predators, respectively. Similarly, wSI and wII are the times
wasted by infected predators when encountering susceptible and
infected predators, respectively.

The time spent searching for prey is T j
s = T j

− T j
h − T j

w , where
j = S, I . Substituting T j

h and T j
w by the expressions in (10) and

(11), respectively, gives

T S
s =

T S

1 + aSXhS + bSSSwSS + bIS IwIS
,

T I
s =

T I

1 + aIXhI + bSISwSI + bII IwII
.

(12)

The number of prey caught by susceptible and infected predators
is, respectively,

V S
= aSXST S

s ,

V I
= aIXIT I

s ,
(13)

i.e., proportional to the product of prey and predator densities, to
the search rate, and to the time spent searching. The functional
response is the number of prey caught per unit time per predator.
We therefore substitute the expressions (12) into (13) and then
divide (13) by T j, j = S, I , and by S or I . This gives the follow-
ing functional responses of susceptible and infected predators,
respectively,

fS(S, I, X) =
aSX

1 + aShSX + bSSwSSS + bISwIS I
,

fI (S, I, X) =
aIX

1 + aIhIX + bSIwSIS + bIIwII I
.

(14)

Appendix B. Analysis of the FDT model

In this appendix, we determine the equilibria of the model
with frequency-dependent transmission and analyze their local
stability. Consider system (6), i.e.,
dN
dt

= (1 − N)N −
NP

1 + wP
,

dP
dt

= a
(

−mP − µPi +
NP

1 + wP

)
, (15)

di
dt

= ia
(
(β − µ)(1 − i) −

N(1 − ν)
1 + wP

)
.

Proposition 1.

(i) The trivial equilibrium E0 = (0, 0, 0) and the extinction equi-
librium with positive prevalence E4 = (0, 0, 1) are always
feasible and they are always unstable.

(ii) The prey-only equilibrium E1 = (1, 0, 0) is always feasible, and
it is stable if m − 1 > 0 and β − µ < 1 − ν hold.

(iii) The disease-induced predator extinction equilibrium

E2 =

(
N2 = 1, P2 = 0, i2 =

β − µ − (1 − ν)
β − µ

)
is feasible if 0 < i2 < 1, and it is stable if m − 1 + µi2 > 0
and β − µ > 1 − ν hold.

(iv) The disease-free predator–prey equilibrium E3 = (N3, P3, 0)
with
N3 = m(1 + wP3),

P3 =
−(m − 1)w − mw − 1 +

√
4mw + (w − 1)2

2mw2

(16)

is feasible if m− 1 < 0. It is stable if β − µ < (1− ν)m holds.

(v) The endemic coexistence equilibrium is

E∗ =

(
1 + (w − 1)P∗

1 + wP∗

, P∗,
β − µ − m(1 − ν)

β − µν

)
,

where P∗ is the root of the second-degree polynomial AP2
+

BP + C = 0 with

A = (µ + m)(β − µ)w2,

B = [2wC + (β − µν)(1 − w)], (17)
C = (µ + m)(β − µ) − (β − µν).

For the feasibility of the endemic coexistence equilibrium we
need to have

1 + (w − 1)P∗ > 0,
β − µ − m(1 − ν)

β − µν
> 0,

and one of the conditions

(a) A < 0 and B < 0 or C < 0
(b) A > 0 and B > 0 or C > 0

must hold, with A, B, and C as defined in (17). For the stabil-
ity of the endemic coexistence equilibrium the Routh–Hurwitz
conditions for a third-degree polynomial must hold.

Proof. To get the equilibrium points we solve the system ob-
tained from equating the RHS of (15) to zero. To study their
stability we compute the Jacobian matrix of (15),

J =

⎡⎢⎢⎢⎢⎣
J11 J12 0
P

1 + wP
−m − µi − J12 −µP

−
(1 − ν)i
1 + wP

(1 − ν)Niw
(1 + wP)2

J33

⎤⎥⎥⎥⎥⎦
with

J11 = 1 − 2N −
P

1 + wP
,

J12 =
−N

(1 + wP)2
,

J33 = (2i − 1)(µ − β) −
(1 − ν)N
1 + wP

,

and evaluate it at each equilibrium point. Once we have the char-
acteristic polynomial we compute the eigenvalues and analyze
the signs of their real parts.

(i) This can be shown with a few calculations.
(ii) The eigenvalues of J|E1 are λ1 = −1 < 0, λ2 = −(m − 1),

and λ3 = (β −µ)− (1−ν). For the stability of E1, m−1 > 0
and β − µ < 1 − ν must hold.

(iii) For P = 0 and N = 1, we obtain from the third equation
of (15)

i2 =
β − µ − (1 − ν)

β − µ
.

For the feasibility of E2, 0 < i2 < 1 must hold.
The eigenvalues of J|E2 are λ1 = −1 < 0, λ2 = 1 − m − µi2,
and λ3 = − [β − µ − (1 − ν)]. For the stability of E2, 1 −

m − µi2 < 0 and β − µ > 1 − ν must hold.
(iv) For i = 0, we get N = m(1 + wP) from the second equation

of (15) and substitute N in the first equation. Then we get a
second-degree polynomial in P:

mw2P2
+ ((m − 1)w + mw + 1)P + m − 1 = 0. (18)

Notice that, according to Descarte’s rule, (18) has at least
one positive root if m−1 < 0, while the case of two positive
roots is impossible.
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The eigenvalues of J|E3 are λ1 = −(1 − ν)m + β − µ, while
λ2 and λ3 are the roots of

λ2
+

[
m(1 + wP) +

wmP
1 + wP

]
λ +

mP
(1 + wP)2

+ wm2P = 0,

(19)

where P is the positive root of (18). Assuming that E3 is
feasible, it is stable if β −µ < (1−ν)m holds. Notice that λ2
and λ3 are negative roots of (19), in fact all the coefficients
of (19) are positive.

(v) We get

N =
1 + (w − 1)P

1 + wP
(20)

from the first equation of (15). Summing up the second and
the third equation of (15) we get

i =
β − µ − m(1 − ν)

β − µν
. (21)

Substituting (20) and (21) into the third equation of (15), we
get a second-degree polynomial in P:

AP2
+ BP + C = 0 (22)

with

A = (µ + m)(β − µ)w2,

B = [2wC + (β − µν)(1 − w)], (23)
C = (µ + m)(β − µ) − (β − µν).

For the feasibility of the coexistence equilibrium we need
to have the positivity of the prey population and of the
prevalence, respectively,

1 + (w − 1)P∗ > 0,
β − µ − m(1 − ν)

β − µν
> 0.

For the positivity of the predator population, one of the
conditions

(a) A < 0 and B < 0 or C < 0 or
(b) A > 0 and B > 0 or C > 0

must hold, with A, B, and C defined in (23). Notice that it
is impossible for (22) to have two positive roots, in fact we
cannot have two alterations in the signs of the coefficients
of the polynomial (22).
The eigenvalues of J|E∗

are the roots of the characteristic
polynomial λ3

+ a1λ + a2λ + a3 = 0. a1, a2 and a3 are
too involved to be reported here. For the stability of E∗

the Routh–Hurwitz conditions for a third-degree polynomial
must hold, i.e., a1 > 0, a3 > 0, and a1a2 > a3. □

Appendix C. Analysis of the DDT model

In this appendix, we determine the equilibria of the model
with density-dependent transmission and analyze their local sta-
bility. Consider system (7), i.e.,

dN
dt

= (1 − N)N −
NP

1 + wP
,

dP
dt

= a
(

−mP − µPi +
NP

1 + wP

)
, (24)

di
dt

= ia
(
(βP − µ)(1 − i) −

N(1 − ν)
1 + wP

)
.

Proposition 2.

(i) The trivial equilibrium E0 = (0, 0, 0) and the extinction equi-
librium with positive prevalence E4 = (0, 0, 1) are always
feasible. The disease-induced predator extinction equilibrium
E2 = (1, 0, (µ + 1 − ν)µ−1) is feasible if ν = 1, i.e. only
for complete vertical transmission. Furthermore all of them are
unstable.

(ii) The prey-only equilibrium E1 = (1, 0, 0) is always feasible, and
it is stable if m − 1 > 0 holds.

(iii) The disease-induced predator extinction equilibrium E2 =

(1, 0, 1) is feasible if and only if ν = 1, and it is always
unstable.

(iv) The disease-free predator–prey equilibrium E3 = (N3, P3, 0)
with N3 and P3 as in (16) is feasible if the predator population
is positive, i.e., m−1 < 0. Furthermore, it is stable if βP2−µ <

(1 − ν)m holds.
Remark: The equilibrium point E3 is the same as the one in
Proposition 1, but the stability conditions are different.

(v) The endemic coexistence equilibrium is

E∗ =

(
1 + (w − 1)P∗

1 + wP∗

, P∗,
βP∗ − µ − m(1 − ν)

βP∗ − µν

)
,

where P∗ is the root of a third-degree polynomial, for which no
analytical expression was found.
For the non-negativity of the prey population and of the preva-
lence, we need to have

1 + (w − 1)P∗ > 0 and
βP∗ − µ − m(1 − ν)

βP∗ − µν
> 0,

respectively.
For the stability of the endemic coexistence equilibrium the
Routh–Hurwitz conditions for a third-degree polynomial must
hold.

Proof. We proceed as for the FDT model in Appendix B. The
Jacobian matrix of (24) is

J =

⎡⎢⎢⎢⎢⎣
J11 J12 0
P

1 + wP
−m − µi − J12 −µP

−
(1 − ν)i
1 + wP

J32 J33

⎤⎥⎥⎥⎥⎦ ,

where

J11 = 1 − 2N −
P

1 + wP
,

J12 =
−N

(1 + wP)2
,

J32 =

[
β(1 − i) +

(1 − ν)Nw

(1 + wP)2

]
i,

J33 = (2i − 1)(µ − βP) −
(1 − ν)N
1 + wP

.

(i) With a few calculations this is easy to find.
(ii) The eigenvalues of J|E1 are λ1 = −1 < 0, λ2 = −(m − 1),

and λ3 = −(µ + 1 − ν). For the stability of E1 m − 1 > 0
must hold.

(iii) For P = 0, N = 1, we obtain from the third equation of (24)

i =
µ + (1 − ν)

µ
.

E2 is feasible if ν = 1, thus only for complete vertical
transmission model. The eigenvalues of J|E2 are λ1 = −1 <

0, λ2 = −(m + µ − ν), and λ3 = 1 − ν + µ > 0. Hence, E2
is unstable.
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(iv) The equilibrium E3 is the same as for FDT. The eigenvalues
of J|E3 are λ1 = −(1 − ν)m + βP − µ, while λ2 and λ3 are
the roots of (19). Assuming that E3 is feasible, it is stable if
βP −µ < (1−ν)m holds. Notice that λ2 and λ3 are negative
roots of (19), in fact all coefficients of (19) are positive.

(v) We get

N =
1 + (w − 1)P

1 + wP
(25)

from the first equation of (24). Summing up the second and
the third equation of (24) we get

i =
βP − µ − m(1 − ν)

βP − µν
. (26)

Substituting (25) and (26) into the third equation of (24), we
get a third-degree polynomial in P

A1P3
+ B1P2

+ C1P + D1 = 0,

where

A1 = (µ + m)βw2,

B1 = (µ + m)(2βw − µw2),

C1 = (µ + m)(β − 2µw) + µν(w − 1),

D1 = −(µ + m − ν)µ.

For the feasibility of the coexistence equilibrium we need
to have the positivity of the prey population and of the
prevalence, respectively,

1 + (w − 1)P∗ > 0,
βP∗ − µ − m(1 − ν)

βP∗ − µν
> 0.

P∗ can be found numerically.
The eigenvalues of J|E∗

are the roots of the characteristic
polynomial λ3

+ b1λ + b2λ + b3 = 0. b1, b2, and b3 are
too involved to be reported here. For the stability of E∗

the Routh–Hurwitz conditions for a third-degree polynomial
must hold, i.e., b1 > 0, b3 > 0, and b1b2 > b3. □
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