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Microscopic turbulent motions of water have been shown to influence the dynamics of microscopic
species living in that habitat. The number, stability, and excitability of stationary states in a predator-
prey model of plankton species can therefore change when the strength of turbulent motions varies. In a
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to variations in the physical environment. The degree of spatial heterogeneity can, depending on the
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1. Introduction

Organisms in the ocean crucially depend on their physical
environment. Therefore, biological-physical interactions have a
greatimpact on the spatial distribution, growth, and dominance of
species. Of particular interest are flow patterns in the ocean which
influence marine organisms on all spatial scales (Mann and Lazier,
1996). Large-scale flow patterns across the equatorial Pacific
which are related to the El Nifio phenomenon considerably
diminish the plankton and subsequently the fish production at the
South American coast (Marzeion et al., 2005; Heinemann et al.,
2011). Mesoscale hydrodynamic flow patterns like jets and
vortices are responsible for the emergence of filamental plankton
patterns (Tél et al.,, 2005; Hernandez-Garcia et al., 2002;
Sandulescu et al., 2007) which in turn have a large impact on
growth, coexistence, and dominance of species (Hernandez-
Garcia and Lépez, 2004; Neufeld and Hernandez-Garcia, 2010;
Scheuring et al., 2003; Bastine and Feudel, 2010). Abraham
(1998), McKiver and Neufeld (2011), Hernandez-Garcia et al.
(2002) and Tzella and Haynes (2007) used a carrying capacity
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which can be transported by the flow, but has a fixed spatial
distribution of its source, to explain the generation of plankton
patchiness. Since the seminal paper by Abraham (1998), the
influence of stirring and mixing in the ocean on plankton
patchiness and blooms has become an important topic of current
research.

In addition to the already mentioned large and mesoscale
hydrodynamic flows, small-scale turbulence contributes to the
redistribution of nutrients as well as the behavior of plankton, and
has therefore been considered in various models.

There are many studies, showing that turbulence can affect
the behavior and health of plankton species themselves. Visser
and Stips (2002) and Kigrboe and Saiz (1995) analyzed the effect
of microscopic turbulence on encounter rates, feeding currents,
signal detection, behavior, and prey selection of copepods. Visser
et al. (2009) studied the optimal behavior of zooplankton in a
turbulent environment. MacKenzie and Leggett (1991) quanti-
fied the contribution of small-scale turbulence to the encounter
rates between larval fish and their zooplankton prey. Metcalfe et
al. (2004) modeled a plankton foodweb in environments with
different turbulent levels and therefore different values of
nutrient uptake rates (half-saturation coefficients) and preda-
tor-prey capture rates. Peters and Marrasé (2000) gave an
overview of some experimental data from different laboratory
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studies and made some theoretical considerations. Peters et al.
(2006) studied the effects of small-scale turbulence on the
growth of two diatoms of different size in a phosphorus-limited
medium. However, these studies have investigated the effect of
turbulence on plankton species or communities from a “local”
point of view. They have not taken into account systems of
species which live in regions of different strength of turbulence
and may be spatially connected.

Our aim is therefore to develop a model which couples plankton
population dynamics to hydrodynamic motion, including the effect
of the heterogeneous environment on biological growth. We
further investigate if these effects can be a mechanism for plankton
patchiness or plankton blooms.

In the following section, we point out some possible effects of
turbulent environments on plankton systems and develop differ-
ent models which take into account these impacts. We begin with
“local” models consisting of ordinary differential equations that
ignore spatial fluxes. Nevertheless, we show that the effects of
turbulence included in those models can influence the number and
stability of stationary states of the system.

We then extend the models by incorporating spatial dynamics.
Our simulations show that a spatially inhomogeneous distribution
of turbulence strength has varied impacts on the whole excitable
system and is able to trigger or to suppress propagating pulses of
high population concentrations, corresponding to plankton blooms
and patchiness.

2. General biological model

Since our main focus is on plankton dynamics in aquatic
environments, we consider phytoplankton P and zooplankton Z as
the major components of the biological system.

We focus on excitable predator-prey models based on the
model introduced by Truscott and Brindley (1994) to explain the
emergence of large plankton blooms such as red tides:

dz aP"

= - - 7_ q

de s e (1)
dp P\  aP"

ga = rP(l _E> —WZ,

where P denotes the phytoplankton density as the prey and Z is the
zooplankton density corresponding to the predators. In the
absence of predators, P grows logistically with the maximum
per capita growth rate r until it reaches the carrying capacity K. Pis
grazed upon by Z with the maximal grazing rate a. h is the half-
saturation density of prey, so that the factor (P")/(h" + P") = 0.5 for
P = h. The type of functional response is defined by n. If n=1, the
predator grazes with a Holling-type Il functional response. If n = 2,
grazing is of Holling-type IIl. q gives the order of the predator
mortality (Edwards and Yool, 2000). We analyze models with a
linear predator mortality (g=1) and a model with quadratic
mortality (g =2). A quadratic predator mortality is motivated by
possible intraspecific competition or the existence of a top
predator, which is not explicitly modeled. m; is the predator’s
per capita mortality rate. £ is a factor describing the different
timescales of the dynamics of the two different species (Sieber et
al., 2007).

All quantities are non-dimensional
Appendix A).

The predator-prey models have a trivial stationary state (P*V),
ZMy=(0, 0), a semi-trivial stationary state (P?, Z®)) = (K, 0), and,
depending on the set of parameters, one or more non-trivial
stationary states in the positive quadrant of the phase-plane.

in this paper (see

2.1. Possible effects of turbulent flows on the vital parameters and
feeding behavior

In this section we point out how turbulent motion on the length
scale of the diameter of plankton cells can influence the parameters
of the system (1).

Experimental results show that in a low turbulent regime only
insignificant effects on plankton organism can be observed (Peters
and Marrasé, 2000). In an intermediate turbulent environment,
positive effects on growth rates of phytoplankton and capture rates
of zooplankton were measured; in highly turbulent environments
insignificant or negative effects were found. However, negative
effects were observed for unrealistically strong turbulence, which
cannot be observed in oceans but only in cultures with artificial
turbulence.

According to our aim to investigate the influence of small-scale
turbulence on plankton growth, we consider two possible mecha-
nisms of how turbulence can change the growth rates of phyto- and
zooplankton. On the one hand, we assume that a higher turbulence
level increases the zooplankton capture rate of phytoplankton. On
the other hand, we incorporate a turbulence-dependent growth of
phytoplankton in our model. For the latter, we suppose that
turbulent mixing leads to a homogenization of the nutrient
distribution reflected by a turbulence-dependent carrying capacity.

Regarding turbulence-dependent zooplankton growth, we base
our model on some experimental results. Peters et al. (2006)
observed more Coscinodiscus sp. (a species of diatoms) cells in a
turbulent environment than under still water conditions with low
nutrient concentrations. They explained this observation by
comparing these experimental results to a model using the
Michaelis-Menten nutrient uptake model with a turbulence-
dependent half-saturation constant. Metcalfe et al. (2004) used
the same ansatz and provided values for the half-saturation
constant for copepods and ciliates between 71 nmol P1-!in a non-
turbulent environment and 44 nmol P1~! in a turbulent environ-
ment with a high turbulent kinetic energy dissipation.

To study the impact of turbulence on the growth of zooplankton
we adopt the ideas of Peters et al. (2006) and introduce a
turbulence-dependent half-saturation constant h = h(turb) in the
predator functional response. For an example, we illustrate this for
the Holling-type III functional response gys:

aP?

P, turb) (= ————,
B ) K2 (turb) + P*’

(2)

where P is the density of prey, and a the maximal ingestion rate of
the predator. The normalized parameter turb, with 0 < turb <1,
describes the relative strength of turbulence.

We define

ho

h(eurd) = e,

(3)
as the turbulence-dependent half-saturation density, where hq is
the maximal half-saturation density. The explicit dependence of h
on turb can be influenced by the parameter c,. We use this simple
dependence on turbulence, but in a more complex model ¢, can be
a function of turb as well.

Regarding the turbulence-dependent phytoplankton growth in
an environment with high nutrient concentration, we use a logistic
model for the growth of phytoplankton. In a static environment, the
cell depletes the nutrients in its near surrounding. New nutrients can
enter this zone by molecular diffusion from the nutrient rich
environment. If the population of the phytoplankton cells is very
high, it might be that other cells deplete the near surrounding as
well. Light can be diminished because of self-shading. In a turbulent
environment clusters of cells will be segregated, the nutrient
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depleted-zone around a single cell becomes permanently renewed,
and each cell have access to the same mean light intensity.

We can model this as a negative effect of still environments on
the logistically growing species:

dp P
o~ *(1 - ) “

The turbulence-dependent carrying capacity K(turb) is defined
as follows:

K(turb) = Ko + turb - ¢, (5)

where Ky describes the minimal carrying-capacity of the prey.
Similar to the turbulence-dependent half-saturation density
(Eq.(3)), the dependence of the carrying capacity can be varied by ci.

The influence of turbulence cannot only be described by varying
the parameters of the equations describing the biological
dynamics. Some species are forced to change their behavior in a
turbulent environment, which also can be included in our model. If
a predator is hunting in an area with low prey density, it may
migrate into another area if it is not successful in finding food for
some time (Anderson et al., 2012). This behavior can be modeled
by a sigmoid functional response (Luck et al., 1979; Real, 1977). A
turbulent environment would disturb the predator, making it
harder or even unnecessary to behave like this because the
turbulent medium force the plankton to some random motion.
Morozov (2010) showed that the sigmoid grazing function
(Holling-type III) is realistic for heterogeneous prey distributions
while in a well mixed homogeneous environment the predators’
behavior has to be described less sigmoid (Holling-type I or II).
Therefore we model the change in the predators behavior by
changing from a Holling-type III functional response in a non-
turbulent environment, to Holling-type II in a strongly turbulent,
and therefore well mixed, environment.

For this, we use the following functional response g(P, turb):

aP aP?

P, turb) := turb - 1-turh) —————,
&( ) h ( ) h(turb)® + P?’

eurb) + P ©

which is a convex combination of the type II and III functional
responses. Note that for turb=1, we get the type Il functional
response, and for turb = 0, we get the type III functional response.
For O < turb < 1, we get a functional response in between.

In the following section we take a look at different models of the
form (1). The first one will show the effect of turbulence-
dependent parameters K and h in a system with Holling-type III
functional response (n=2), whereas the predator mortality is
thought to be linear (g = 1). In the second model we additionally
assume that the predator changes its behavior as described in
Eq. (6), and model III will be a variant of model I with a quadratic
predator mortality (q = 2).

3. Specific predator-prey models

In this section we look at three specific predator-prey models.
For all models we use the following set of parameters which are
adopted from Sieber et al. (2007):

r=1, a=1/9, my=0.0525, g:%. (7)

Moreover, we choose the following values of hy and c, to
ensure that at least one locally stable stationary state in our models
is stable.

ho=1/16, ¢, =04, Ko=0.7, cx=0.3. (8)

For turb =1 we get K(turb) = 1, which is identical to the carrying
capacity used by Sieber et al. (2007). However, the parametersr, a,

my, K(1) and h(1) are, in their dimensional version, similar to the
parameters used by Truscott and Brindley (1994).

A general feature of the models we discuss in the following is that
they all have an excitable stationary state for these parameter values.
Excitability means that certain small but over-critical perturbations
from the stable stationary state can result in a huge response of the
system, namely the formation of a large phytoplankton concentration,
before the system returns to the stable stationary state.

3.1. Predator-prey model I: linear predator mortality

First we concentrate on the effect of turbulence on the
parameters K and h:

& (P turb) —my] 2, ©)

(10)

dp_ r<l __P ) @ 4
de K(turb))  R?(turb) + P?

The predator density is constant if Eq. (9) becomes zero. This is
the case for Z=0 and for a particular prey concentration

mzh? (turb)

Po(turb) = am,

(11)
The prey density stops varying in time if P= 0 or if Z fulfills the
equation of the non-trivial nullcline

P

K(turb)

r(
Zo(P, turb) = aP

) (hz(turb) + PZ). (12)

This model possesses one stationary state where predator and
prey can coexist. This non-trivial stationary state (P), Z3)) where
the two nullclines intersect is the only stable stationary state of
this model using the parameter-set (7) and (8).

(P, 23y = (Py(turb), Zo(Po(turb), turb)). (13)

(P3), Z3)) is stable if the determinant of the Jacobian matrix is
positive and the trace is negative. The first condition leads to
h(turb) < K(turb)\/a — mz/mz if m, < a and the second condition
gives h(turb) > (1 — a/2myz)K(turb)\/a — m;/my for a > mz. With
the chosen parameters (7) and (8) both conditions are always true.

When increasing turbulence, the non-trivial stationary state
moves along the nullcline Zy(P, turb) to smaller prey densities
(Fig. 1). The system is excitable as long as the predator nullcline Py

304 trajectory with turb=0.0 wsmwuwun

25

204

1510

Predator

Prey

Fig. 1. Nullclines of model I. Dashed lines: turb = 1; solid lines: turb = 0; additionally,
a trajectory for each value of turb is plotted which starts at a position near the
stationary state shifted to higher values of P (P(t = 0) = P®) + AP with AP = 0.05). The
trajectories then grow to higher values of P and Z before they end at the stationary
state. With increased turb the system reaches higher density values during the
excitation.
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Fig. 2. (a) Bifurcation diagram. Dashed lines: unstable stationary states, solid line: stable stationary state, empty circles: maximal prey-density of unstable limit cycles, filled
circles: maximal prey density of stable limit cycles. (b) Nullclines of model II. Dashed lines turb = 1; solid lines turb = 0.

intersects the prey nullcline Z at the left of the local minimum of
Zo. After the phytoplankton concentration reaches the nullcline
Zo(P, turb) during an excitation, the zooplankton population
increases as well and the system returns to the stationary state.
To illustrate this, one trajectory for the system with turb=0 and
one for the system with turb = 1 is added to Fig. 1. Both trajectories
start close to the stationary state and return after a long journey
though phase space, passing high prey and predator densities. The
maximum of these excitations depends on the carrying capacity K
and, therefore, on the parameter turb.

3.2. Predator-prey model II: changing grazing behavior
In our second model we consider the case where the predator

can switch its feeding behavior according to the turbulence level
(see Eq. (6)):

d—Z = g(P,turb)Z —mzZ,

dt

dp_ rP( 1 P P, turb)Z (14)
a - ~K(arp)) ~ 8P wrb)z.

In numerical simulations with low values of turb, this system
behaves similarly to the one discussed before. However, at a
certain level of turbulence, the stationary state loses stability in
a subcritical Hopf bifurcation (Fig. 2a). For a very small range of
the parameter turb there is a stable and an unstable periodic
solution which coexist with the stable non-trivial stationary
state. For larger values of turb only the stable periodic solution
remains. The system then behaves periodically without any
excitations. The reason for this is that the prey nullcline (Fig. 2b)

P 1
Zo(P, turb) = r(l — ) 5
K(turb)) (1 — turb)m + turb pegtp
(15)
(@) 1.0
0.8
' 1p®)
5 0.6 /
o 04 RN O
0.2
0.0 P@
00 02 04 06 08 10
turb

changes from a function with two local extrema in the positive
quadrant to a function with one single extremum in the positive
quadrant when increasing turb. For large values of turb, the
stationary state (P®), Z3)) loses stability and there is no stable
stationary state in the positive quadrant any more. This is caused
by the change of predator behavior as described in Eq. (6).

For large values of turb, the trajectory comes very close to the
vertical axis P=0 which is the stable manifold of the trivial
solution (0, 0). Mathematically, P is always greater than zero.
However, if we define a minimal viable population size Py, and set
P=0 for P < Py, both species go extinct.

3.3. Predator-prey model IlI: quadratic predator mortality

Now, model I is modified by introducing a quadratic mortality
term in the predator dynamics:

% = g3 (P, turb)Z — mzZ?, (16)
dp P
T rp(1 _ W) — g3 (P, turb)Z. (17)

This modification gives rise to a saddle-node bifurcation
(Fig. 3a) yielding two additional stationary states, (P¥, Z*)) and
(P, Z3)), (P, )Y is an unstable state while (P, Z3) is locally
stable. The system becomes bistable. Depending on the initial
conditions the system converges to either one or the other stable
stationary states. Note that the system can switch between the two
locally stable stationary states if a perturbation of some kind
pushes it into the basin of attraction of the other stationary state
(Fig. 3b).

4. Spatial model

So far we have treated the impact of turbulence as an additional

parameter, which is constant in space and time, and influences the

(b) 3.0 : ; . .
2'5 [ - S ]
.20 ] E
g 1.5 pB) 56) i
10 :
05 p@® z® .

0.0 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0
Prey

Fig. 3. (a) Bifurcation diagram. Solid lines represent stable, and dashed lines unstable stationary states. (b) Basin of attraction for turb = 1.0. Initial conditions inside the white
area leading the system to the stationary state (P, Z>)), whereas the dark area leads to the stationary state (P**), Z*)). Additionally, the nullclines of the system are shown.



M. Bengfort et al./Ecological Complexity 20 (2014) 185-194 189

behavior of the grazers and the growth parameters of the
populations. In a real fluid, the turbulence level changes in space
depending on the velocity field. However, to simplify our approach,
we do not consider real turbulent fields. Instead we assume a
velocity field which possesses certain features of an ocean flow.
Using these features, we construct a spatially inhomogeneous
distribution of the parameter turb to mimic spatially heteroge-
neous physical conditions. Therefore, we now consider the
interplay of biological growth with inhomogeneous physical
features in a spatial domain.

A typical feature in an ocean flow field is a rotating eddy. Lee
(2012) showed that eddies may have some influence on predator-
prey systems. In contrast to that work, we do not focus on species
of a length scale similar to the eddy (e.g. fish), but on plankton
species whose length scale is much smaller than the grid that we
use to describe the eddy itself. We describe an eddy by the
following stream function:

9 v:@. (18)

_ap2 JX—X0|2. _ o
¢>(x,t)ARexp< >, U= TR =

2R?

X =(x, ¥) is a two-dimensional vector giving the position on the
spatial grid, u is the resulting velocity in the horizontal direction (x)
while v gives the velocity in the vertical direction (y). R is the radius
of the eddy, X, is the position of its center, and A is a factor to vary
its strength. The resulting flow field is radially symmetric around
the center Xxq of the eddy (Fig. 4). Because everything would move
in circles around X, it is not necessary to look at the effect of
advection in this flow.

A two-dimensional hydrodynamic flow can be characterized
with the help of the strain tensors

ou ov .

Sp = ™oy normal strain, (19)
v odu .

So=t 3 shear strain. (20)

Assuming that macroscopic strain leads to microscopic turbu-
lence, we use the strength of the strain created by the flow as a
quantity for turbulence:

turb = norm(S? + S2)

2 2 2
= norm <exp< X ;R)gol > x _R;(O| .A> . (21)

(82 +S2)

0.3

0.2_.4;/'7

01l

- T TR 0.0
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

galerisjessspsns

X

Fig. 4. Absolute strain rates (S2 + S2) generated by a flow field of a single eddy. The
velocity field is indicated by arrows. R=0.1, A = exp(1)/2, xo = (0, 0).

norm is a factor to normalize turb so that 0 <turb<1. We set
A =exp(1)/2.In this case the maximal value of the squared absolute
strain rate 52 + S? is equal to 1 and therefore norm = 1.

This assumption is motivated by the stress-similarity model by
Liu et al. (1994). The idea of this model is that velocities at different
scales give rise to turbulent stress with similar structures. The sub-
grid-scaled turbulent motion can then be implemented as an
increased coefficient of diffusion:

D = Dpin + turb - (Dmax — Din)- (22)

Dpin and D.x are the maximal and the minimal coefficients of
diffusivity in the system. In our simulations we do not choose the
values of D,;;, and D4« on the basis of experimental data, but we
analyze the effect of different choices.

Now, we consider the following reaction-diffusion equations on
a two dimensional grid with an inhomogeneously distributed
diffusion coefficient which correlates with the parameter turb:

% =Fz(P,Z) + V(D(X)VZ)
=Fz(P,Z) + (VD(X))(VZ) + D(X)V?Z, (23)
% = %FP(P, Z) + V(D(X)VP)

= Fp(P,Z) + (VD(X))(VP) + D(X)V2P. (24)

FAP, Z) and Fy(P, Z) are the equations of the biological reaction
from Sections 3.1 to 3.3. For model I, for instance, this means
FoP, Z)=t1P(1—P|K)— (aP*/(h*+P?)Z and FAP, Z)=(aP?
(hz + Pz))Z — mzZ.

V =(0/dx, 9/dy) is the two-dimensional Nabla operator. In case of
a spatially constant coefficient of diffusion D, the factors (VD(x))(VZ)
and (VD(x))(VP) vanish. We call these terms “gradient terms”.

At the boundaries of the two-dimensional grid we use
Neumann boundary conditions VZ=V P=0.

The idea of spatially inhomogeneous diffusion coupled with
inhomogeneous biological parameters has also been pursued by
Shigesada et al. (1986, 1987). They studied the propagation of
periodic waves on a grid with a periodical change in the
coefficient of diffusion and the growth rate of the population.
Lutscher et al. (2006), Mckenzie et al.(2012)and Jin et al.(2014)
used a similar mechanism to explain the survival of species in a
stream.

5. Numerical results

Because of the radial symmetry in our spatial model, we can
restrict our attention to the one-dimensional problem along the
radius of the eddy. Therefore we use the radial distance from the
center of the eddy, r, as spatial parameter. As initial conditions we
use the locally stable stationary state (P, Z®)) at all values of r for
each model. If (P*®, Z)) does not exist (model II at high values of
turb), we use the last existing (P®, Z®)) at lower values of turb
instead.

5.1. Model I - spatially extended

Fig. 5 shows the value of turb as a function of the radial distance
from the center of the eddy. Additionally Fig. 5 shows the stable
states of model I when ignoring diffusion in Eqs. (23) and (24).
These are the solutions of (9) and (10) which depend on the spatial
location as turb varies with r. In the more turbulent regions around
the eddy center the prey and predator densities are smaller than in
the less turbulent regions.
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from the eddy center r = 0. The higher the value of turb, the smaller the values of the
stable stationary states P and 7%,

If the difference in population size between two spatial sites
is large enough, diffusive coupling between the two locations
may result in a perturbation that triggers a local excitation as
shown in Fig. 1. Hence, when considering diffusion in Eqgs. (23)
and (24), the “local” system at a site may become excited and

prey density
100 0.9
90 0.8
80 07
a9 0.6
o
40 0.4
30 0.3
20 0.2
10 0.1
0 0
1 . . .
g 05 - [\ :
0.0 0.2 0.4 0.6 0.8 1.0

r

turb

M. Bengfort et al./Ecological Complexity 20 (2014) 185-194

then “infect” the neighboring sites. Due to the radial symmetry of
our flow field, this leads to a ring of excitation around the eddy
which propagates through the entire excitable spatial system
(see Fig. 6). After an excitation, the system returns to its initial
state, and the ring of excitation starts again due to the trigger of
diffusive fluxes.

The lower panels of Fig. 6 show the distribution of the
parameter turb in space. The upper panels show the temporal and
spatial changes of the plankton densities. Note that the densities
in the area with high values of turb reach larger values during the
excitation than in the less turbulent regions. By contrast, in the
absence of diffusion, population sizes of both phyto- and
zooplankton are smaller in the turbulent region (cf. Fig. 6).
Hence, the rings of excitation lead to repeated spatiotemporal
“blooms”.

Depending on the parameters used in the model, the diffusive
coupling has to exceed a certain critical value to excite the
system. Two coupled local systems can only trigger an excitation
if one local system is located in a particular area of the phase
plane in relation to the other local system. This is illustrated in
Fig. 7.If the coefficient of diffusion cannot link two local systems
in such a way that they excite each other, no propagating pulses
occur in the spatial system. Otherwise, propagating pulses occur
and their frequency remains constant in this model.
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Fig. 6. Repeated excitations in model I with diffusion that form pulses in space and time for both prey and predator densities (upper panels). The lower panels show the
turbulence profile that leads to local perturbations of population size triggering the excitations. Parameter values: Dpin =5 1074, Diax = 2.3 - 107>
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with turb = 0.81. If the diffusive coupling can link this system with the system with turb = 0.8 (solid nullclines), no excitation occurs, because both stationary states are located
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results in an excitation.
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Fig. 8. Stable non-trivial states (P" and Z') of model Il without diffusion in a radial
distance r from the eddy center r = 0. Around the maximal value of turb the system
ends up in periodic solutions, which are not shown here.

5.2. Model Il - spatially extended

Model Il differs from model I by the fact that the area with high
turbulence has no stable non-trivial state, but periodic solutions
(Fig. 8). These periodic solutions can have high amplitudes (cf.
Fig. 2a). At the beginning of the oscillation period the major change
takes place in the prey density, whereas the predator density starts
increasing with a certain time delay because of £ < 1. So spatial
sites which accommodate biological systems in the oscillatory
state easily excite the neighboring sites even at very small
coefficients of diffusion.

The resulting propagating pulses are similar to those in model I
(Fig. 6), but occur even at very low values of the diffusivity.

5.3. Model IIl - spatially extended

For large values of turb, model Il is bistable as there is an
additional stable stationary state (P*), Z®)) with large plankton
densities. This is illustrated in Fig. 9 a for the spatially extended
model Il without diffusion.

When considering diffusion, we again use the stationary state
at small plankton-densities (P*®), Z(®) as initial conditions. So
before the first excitation occurs, model Il with diffusion behaves
similarly as model I with diffusion. However, if an excitation
occurs, the plankton densities may reach such large values that
they get attracted by the alternative stable state (P®), Z®)) if this
state exists, i.e. in the more turbulent area. Hence, after the
first excitation, the system gets “caught” in the high-densities
state in some spatial locations and does not return to the initial
state with small plankton densities anymore. Therefore, it is
already clear that model III can behave profoundly differently in
space and time than model L.

Once the populations are “caught” in (P*®, Z®) in the turbulent
area, we can observe two different scenarios. First, the diffusive
coupling between states with large (P®), Z®)) and small (P®), Z3)
densities can result in an excitation of the excitable system. In this
case, a pulse of excitation starts from the interface between (P>,
Z) and (P, Z®)), i.e. the eddy boundaries. This is illustrated in
Fig. 9b, where a pulse of excitation propagates radially away from
the eddy. Secondly, if the differences in population size between
(P, 3y and (P®, Z®)) and the gradient of the diffusivity profile
are too large, the gradient terms (V D)(V P) and (V D)V 2)
become large and important. They represent an extra positive term
for both phytoplankton and zooplankton in Egs. (23) and (24),
respectively, at the eddy boundary and in its center. While an
increase in phytoplankton density tends to promote excitability, an
increase in zooplankton tends to reduce excitability (cf. the phase
plane portrait in Fig. 3a). Simulations performed indicate that the
latter effect seems to prevail. This is illustrated in Fig. 9c, where a
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Fig. 9. Dynamics of model II1. (a) Stable non-trivial stationary states (P" and Z') with
no diffusion. The area around the maximal turb is bistable. (b) Snapshot at t = 77 for
small Dipax = 9.5 - 1074, The arrows indicate the direction of the propagating pulses
which start from the eddy. (c) Stationary pattern for large Dpax=2.3 - 1072, No
propagating pulses occur for large gradient terms. In the area of high turb the system
remains in a state of high densities. The dashed line shows the gradient term for the
predator dynamics (V D)(V Z) multiplied with the factor 1000. In panels (b) and (c)
the minimal coefficient of diffusion is Dpmin =5 -10%.

large difference in diffusivities prevent excitations. In the turbulent
area, the system remains in the alternative stable state with large
densities. This is a stationary pattern that does not change in time,
in particular, there are no propagating pulses of excitation.

5.4. Frequency of propagating pulses

To summarize this section we point out that there is one effect
which occursin all three spatial models: If the timescale factor is much
less than 1 (§ < 1), the eddy creates rings of excitation in the
surrounding system. Those excitations propagate through the system
radially away from the eddy center (see Fig. 6 as an example.) This
result is similar to Muratov et al. (2007) who generated propagating
pulses of excitation with additive noise in excitable systems.

The velocity of the radial pulses generated in excitable media has
been computed by Keener (1980). For £ < 1 it mainly depends on
&1, Differences in the frequency in which they are generated
depend on the model and the spatial distribution of D. Fig. 10 shows
the number of propagating pulses running through the system (we
count the number of times the densities exceed a certain value and
go back to lower values again at the right boundary of the system.).

We can observe the following effects in the three models
considered. In the case of a spatially constant coefficient of
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Fig. 10. Number of propagating pulses in the first 5000 time units. The same position on the horizontal axis of each panel gives the same value of AD(r) = Diax — Dmin- (2)
Dimin = 1-107%: with increasing Dp.x the strength of the diffusivity D(r) also increases at the edge of the turbulent area and propagating pulses occur in model II. In model III
only one propagating pulse has been counted at high Dy,.x. Model I shows propagating pulses at all values of Dyyax. (b) Dmin = 5 -10~%: there is a range of values Dy, which
allow many propagating pulses in model IIl. Model I exhibits pulses of excitations for all values of Dy,.x, as diffusivity is generally large enough.

diffusion we have Dy,.x = Dmin and have to consider the smallest
values shown on the horizontal axes in Fig. 10 (which are
intersected by the vertical axes). For model I, the diffusivity in
panel a is not strong enough to trigger pulses of excitation. For a
higher diffusivity (panel b) excitations are observed in model I,
even without a diffusion gradient. Model II shows propagating
pulses of excitation in both cases of low and high diffusivity,
because the oscillations in the local model provide large enough
perturbations to trigger excitations independently of the diffusivi-
ty (as long as D(r) > O for all r). Model Il is similar to model I after
starting the simulation with the initial conditions; both panels do
not show any excitations for this model when diffusivities are
spatially constant. This is caused by the fact that the stationary
state (P, Z®) in the local model Il is not exactly identical with the
one in model I. So there is a higher coefficient of diffusion needed to
start excitations in model III than in model L.

In the case of spatially heterogeneous coefficients of diffusion
D(r), i.e. Dmax > Dmin, the pulse frequency varies with the maximum
coefficient of diffusion D, with the minimum coefficient of
diffusion Dy, being held constant in each panel of Fig. 10. In general,
increasing Dpax also increases VD = (Diax — Dmin) V turb and thus
renders the gradient terms non-negligible.

If the minimal coefficient of diffusion does not allow excitations
in model I (Fig. 10a), propagating pulses occur in the system
beyond a certain maximal coefficient of diffusion Dyax. At this
value of Dy, the local diffusivity at the edges of the high turbulent
area is large enough to make an excitation possible. If the minimal
diffusion coefficient is large enough (Fig. 10b), propagating pulses
occur for all values of Dy ax.

Model 11 shows no significant changes in the case of
heterogeneous coefficients of diffusion, because the oscillations
in the local model in the turbulent regions allow excitations even
at small coefficients of diffusion.

For model III, a sufficiently large value of Dy,.x leads to exactly
one pulse of excitation. This is because after the first excitation, the
system remains in the stable state (P>, Z>’) with high turb, and the
gradient terms prevent further excitations. This effect holds for
both low and high diffusivities (Fig. 10a and b, respectively).
However, if diffusivity is high (Fig. 10b), there is a range of values of
Dmax Where repeated pulses of excitation take place. Here the
diffusivity is strong enough to make excitation possible from the
initial conditions, but the gradient VD is small enough not to
suppress further propagating pulses.

6. Discussion and conclusion
The aim of our investigation is to examine how heterogeneous

environmental conditions can influence a predator-prey system.
These heterogeneities are based on a different strength of

turbulent motion in the environment. We have found that these
heterogeneities can produce pulses of high plankton densities,
which propagate through the global spatial system.

We considered three different predator-prey models with
implementations of turbulence-dependent parameters. All models
are based on the Truscott-Brindley model. The first model used a
Holling-type III functional response with turbulence-dependent
half-saturation density, logistic prey growth with turbulence-
dependent carrying capacity and linear predator mortality. The
second model added the scenario that the predator changes its
behavior by switching from a functional response of type Il to type
Il with increasing turbulence. Model Il used a quadratic predator
mortality.

We used a single set of parameters for the three models. Other
dynamics than those shown in this paper are possible if other
parameter values are used. Nevertheless we have shown that
turbulence can influence the number and stability of stationary
states of the local models described by ordinary differential
equations. Even though the effect of turbulence on each species in
the phenomenological descriptions (i.e. Eqs. (3) and (5)) is
positive, the stationary state in the interaction of both species can
be at lower population densities, so that the total effect of
turbulence on the phytoplankton biomass is negative. Hence, the
influence of turbulence on the plankton ecosystem cannot be
completely understood by looking at a single species alone. Instead
we have to take a look at the interaction of different species in such
systems as well.

In space, the excitable models behave differently in different
areas of a heterogeneous environment. Diffusive coupling of
neighboring areas leads to global effects. Local turbulence not only
changes the plankton concentrations locally, but also has the
ability to produce pulses of high plankton densities which
propagate through the whole system. This was shown with a
simple one-dimensional reaction-diffusion model and can be one
candidate mechanism creating plankton blooms and patchiness.

It turns out that excitability in the spatial systems is dependent
on the timescale factor £ and the gradient of the eddy diffusion
VD(r). For weaker eddies (A < exp(1)/2), the parameter turb does
not reach the value 1. This also influences the excitability of the
spatial system. The way the parameters turb, Dya.x and Dy, are
linked is important for the dynamics of the entire system. turb
represents the local microscopic turbulence on the length scale of
plankton as a parameter for the ordinary differential equations,
Din and Dy« are simple descriptions of these turbulent motions
on the macroscopic level.

While space-dependent parameters of the biological model
generate propagating pulses through the excitable spatial system,
the space-dependent diffusivity may support (model I) or suppress
(model III) the propagation of these pulses, or has no influence
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(model II). In the first case, the support is a result of the locally
increased diffusion. In the second case, the suppression is a result of
the higher plankton concentration at high values of turb and the
resulting positive effect of the gradient terms. If there are strong local
variations in the plankton dynamics like in model II, the spatial
dependence of the coefficient of diffusion has no significant effect.

Interestingly, previous work on population dynamics in
streams and rivers has shown that rotational flow, caused by
obstacles (e.g., stones) interrupting the constant water flow in a
stream, can positively affect prey and predator survival (Lee, 2012).
Similarly, Scheuring et al. (2003) argued that the strong chaotic
mixing of a viscous water flow around an obstacle can promote the
coexistence of competing species. In both cases, the flow creates
small-scale mosaics that shift in space and time, and benefit the
populations. In this paper, we show that the spatial inhomogeneity
induced by a rotating eddy can augment or diminish local
population size and, more importantly, can create global phenom-
ena like repeated propagating pulses.

Modeling turbulence by linking macroscopic strain rates to
turbulent diffusion (Section 4) is a simplification. Yet, with the help
of this model, we managed to easily relate pattern formation on a
macroscopic spatial level to the local behavior the ordinary
differential equations. In this model we are able to compute a
heterogeneous spatial environment from a static analytical flow
field and use the strain rates as a source for the local microscopic
turbulent motion which influences the plankton dynamics. This
seems to be useful and comprehensible in the context of our
qualitative investigations, but cannot be used to simulate realistic
hydrodynamical problems. In future work, we plan to implement a
biological model into a more realistic three-dimensional advection-
diffusion model and compare the result to our two dimensional
approximations.

Moreover, we simplify the influence of turbulence on plankton
in the way that we assume the same mechanism and dependencies
on an average of plankton organisms of different size and species
(Granata and Dickey, 1991; Karp-Boss et al., 1996; Kierboe and
Saiz, 1995; MacKenzie and Leggett, 1991). Future work could
investigate the competition of species with different responses to
turbulent environments.

In reality, turbulence varies not only in space, but also in time.
The combination of spatially and temporally varying parameters
could lead to further interesting effects. For instance, it has been
shown that the interplay of spatial inhomogeneities and temporal
variability can lead to emergent phenomena such as an invasion
ratchet, describing seasonal invasion dynamics (Jin et al., 2014).

Another interesting investigation would be to analyze the
influence of turbulence on the infection rate of diseases (Kiihn and
Hofmann, 1999; Llaveria et al., 2010) and the resulting spatial
distribution of infected organisms.

Appendix A. A dimensionless predator-prey model

We want to obtain a dimensionless version of the dimensional
system

dz aP"

E:hz_mzzq = F;(P,Z), (25)
dp P ap"

£ = rP(l ’R) — il = §Fe(P.2). (26)

Therefore we set z=Z/(aPy), p = P/Po, T = t/to and get

dz ap"

E:hm—_w.,Z—m/zZq: fo(p,2), (27)

dp _ . (1_P)__ap"
s -rp(1-F) gt e= fp2 (28)

witha' = auty, h = h/Po. m’z = Mgty (P()Ol)qil, r= rto and K’ = K/PQ. Py
is a constant parameter with the dimension of a density while tg is
a constant parameter with dimension time.

In the same way we can write a dimensionless version of the
reaction-diffusion equations:

aX;
ot

Withd = Dx% /to, where the constant xq is a characteristic length
scale, we get:

Fi(P,Z) + (VD)(VX;) + DV2X;; X;e{P,Z}. (29)

%: fi(P,Z)+(Vd)(in)+dV2x,»; xie{p,z}. (30)

filp, z) with i € {P, Z} are dimensionless versions of the system
equations FAP, Z) and Fp(P, Z).
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