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Abstract Infectious diseases have the capacity not only to
influence the host population but also interacting species
like predators. In particular, they can reduce host densi-
ties, which can have knock-on effects on predators. Here,
we consider how an infectious disease in the prey affects
the predator–prey relationship where the prey exhibit some
kind of group defence against the predator (using a Holling
type IV functional response). We find that the disease can
reduce prey densities to levels where the group defence is
weaker. This weakened group defence allows predators to
survive in many situations where they could not without the
disease.

Keywords Eco-epidemiology · Coexistence · Bistability ·
Homoclinic

Introduction

Group-defending prey pose many difficulties for preda-
tors to overcome. Large groups of prey can dazzle and
confuse predators, making it difficult for predators to
focus on and pick out individual prey from the group.
Large groups of prey have many eyes that improve vig-
ilance, reducing the element of surprise often necessary
for successful attack. On top of this, large groups of
prey may even mob attack, potentially harming predators.
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There are many examples of group defence (see Krause
and Ruxton 2002). As early as 1920, Allen suggests that
a school of sardines can confuse Great Northern loons,
whereas Miller (1922) suggests a flock of Bush tits has
many eyes to spot hawks and will respond with a ‘confu-
sion chorus’. More recently, Japanese honeybees have been
reported to mob attack foraging hornets by forming a ‘hot
defensive ball’ around the hornet (Ono et al. 1995).

There have been several attempts to mathematically
model group defence, the first being Freedman and
Wolkowicz (1986). The most common and among the
simplest method of incorporating group defence in a
predator–prey model is by using Holling type IV func-
tional responses (sometimes called Monod–Haldane func-
tional responses, a term with origins in microbiology,
Andrews 1968). Such functional responses behave much
like a Holling type II functional response, especially for
small prey densities. However, instead of saturating at large
prey densities, the functional response will become neg-
atively sloped. That is, the predation rate per predator
decreases for larger prey densities as a consequence of
group defence. From this, it is worth noting that Holling
type IV functional responses usually result in an upper
threshold of prey density, beyond which the predator can-
not survive. This can be seen as a strong group defence.
There are other ways of modelling group defence. For exam-
ple, Ajraldi et al. (2011) and Venturino (2011) recently
suggested a ‘square root’ functional response for preda-
tors of herding prey, particularly for the herding of large
mammals. Their argument centres around the idea that
predators can only attack those prey along the perime-
ter of a herd. Such functional responses neglect the other
aspects of group defence like predator confusion, but
also these functional responses grow particularly high
for small prey densities (with infinite gradient at zero).
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Likewise, Geritz and Gyllenberg (2013) developed a model
for group defence where predators capture only individual
prey and not those in groups. These individual prey can
join and leave groups. This results in a functional response
that is proportional to the number of individual prey
which increases monotonically (sublinearly) with total prey
density.

The combination of group defence and disease has
rarely been considered, either theoretically (Venturino
2011, being an exception) or empirically. However, dis-
eases have the capacity to weaken not only the infected
individuals, but also the group defences. This weaken-
ing can be simply because the disease reduces the size
of the group via disease-induced mortality. However, a
weaker group defence could also be the result of infected
individuals not being as good at contributing to the
group defence. For example, Seppälä et al. (2008) show
that rainbow trout infected with eye flukes have differ-
ent shoaling behaviour to those without eye flukes; and
although infected and susceptible fish were not mixed,
one would expect that infected fish would not co-ordinate
well with susceptibles of the shoal, potentially breaking
down the whole group defence. In short, there is much
prospect for diseases to undermine group defence effort by
prey.

Diseases and predators are competing for the same prey
hosts. In many models, both the disease and predator can
coexist at equilibrium. However, such coexistence between
predator and disease is the result of infected prey being
more vulnerable to predation than susceptible prey. In
particular, equilibrial coexistence cannot occur in models
where predators do not discriminate between susceptible
and infected prey with respect to the predators’ functional
response (Siekmann et al. 2010; Hilker and Malchow 2006).
This is because discriminate predation is reminiscent of
intraguild predation (with susceptible prey as resource,
infected prey as intraguild predator and the predator as top
predator), whereas indiscriminate predation can be rescaled
to exploitative competition (see Sieber and Hilker 2011),
where predator and prevalence (the proportion of infected
prey in the prey population) do not interact directly but both
prey on the same prey host.

In ecology, it has long been established (Gause 1934)
that two species competing for a common resource cannot
coexist at equilibrium (called the ‘principle of competitive
exclusion’; Hardin 1960). In short, exploitative competition
means extinction of one or more predators. There are fac-
tors that undermine this principle; for example, it does not
hold if there is any direct interaction between two preda-
tors like competition. In particular, coexistence can occur
if one of the predators preys on the other predator, i.e.
we have intraguild predation. Another counterexample is
that coexistence can occur if all populations are oscillating,

e.g. due to a Holling type II functional response (McGehee
and Armstrong 1977). Likewise, Chesson (2000) demon-
strates that coexistence can occur if there is some spatial
heterogeneity. Another, often overlooked counterexample is
that one or more of the predators are restricted by some sort
of density dependence (Gurney and Nisbet 1998, pp.166–
167). In this case, coexistence can occur if the density-
dependent predator can survive at prey levels set by the other
predator.

In this paper, we find that a disease and predator can
coexist on the same prey host, contradicting the principle
of competitive exclusion. On top of that, if we assume that
the prey exhibit some group defence, we find that the dis-
ease can benefit the predator by reducing prey densities
to more manageable levels for the predator. In particular,
we find two cases where an endemic disease can prevent
the predator becoming extinct; one case is where the dis-
ease reduces the prey density below a critical threshold; the
other is that the disease reverses a homoclinic bifurcation,
bringing coexistent oscillations from what was the certain
extinction of the predator.

Model derivation

In this section, we will construct two models with predators,
susceptible prey and infected prey where the prey exhibit
group defence. But before we proceed, we need to carefully
derive appropriate functional responses.

The functional response

When modelling group defence for the prey, Holling type
IV functional responses of the form equivalent to aN

1+bN+cN2(
or the simplification aN

1+cN2

)
are often used (Freedman and

Wolkowicz 1986; Ruan and Xiao 2001; Kot 2001, Chap. 9).
Usually, they are used without any mechanistic derivation
or justification. Such Holling type IV functional responses
can be derived from a Holling type II functional response,

aN
1+ahN

, where a is the attack rate, h is the handling time
and N is the prey density. One way of deriving a Holling
type IV is by assuming that the attack rate a decreases with
respect to N inverse-quadratically, i.e. a(N) = a0

1+bN2

(Koen-Alonso 2007). Another derivation assumes that the
handling time is linearly increasing with respect to N, i.e.
h(N) = h0 + hNN . (There have been a few other attempts
to derive a Holling Type IV, for example, Collings (1997)
derives it by assuming both a linearly increasing handling
time and an inverse-linear attack rate, which is not a simple
argument.) The second derivation based on linear handling
times will be used here, largely because it is a simpler argu-
ment. The handling time formulation is apt if we assume
that time taken to attack and catch a prey increases linearly
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with respect to prey density. This increased handling time
can be considered due to group defence and the additional
time it takes to separate and subdue prey at higher prey den-
sities. The time to eat and digest prey is still independent of
prey density.

This single-prey Holling type IV functional response
does not take into account that the prey is structured because
of an infectious disease. We need to derive a two-prey
Holling type IV functional response where the two classes
of prey are susceptible, S, and infected, I. This can be done
by considering the following two-prey Holling type II func-
tional response for susceptible prey, derived using a stan-
dard time-management argument (Holling 1959; Murdoch
1972):

fS(S, I ) = aSS

1 + aShSS + aIhII
.

Here, aS and aI are the attack rates on the susceptible
and infected preys, respectively. Likewise, hS and hI are the
handling times on the susceptible and infected preys, respec-
tively. The infected prey have an equivalent fI(S, I ), which
has the numerator aII .

Now, we can assume, like with the one-prey case,
that the handling times are density dependent. Thus, we

have hS(S, I ) = hS0 + hSSS + hSII and hI(S, I ) =
hI0 + hISS + hIII , where hS0 and hI0 are the density-
independent handling times of the susceptible and infected
prey, respectively; hSS and hIS are the density-dependent
(with respect to susceptible prey) handling times of suscep-
tible and infected prey, respectively; whereas hSI and hII

are the density-dependent (with respect to infected prey)
handling times of susceptible and infected prey, respec-
tively. These formulations take into account that although
infected and susceptible prey are seen as different classes
of prey, they contribute to the same group defence. In
general, all these parameters can be different. For exam-
ple, imagine a diseased fish that cannot follow the rest
of the school, potentially leading to ineffective school
movement and compromised group defence, or a diseased
meerkat that is not as capable at spotting threats when act-
ing as sentry for the clan, leaving the clan at greater risk.
Both of these examples suggest that hSS �= hSI. Likewise,
infected prey can be easier to catch, subdue and eaten
by predator once spotted, suggesting that hSS �= hIS and
hSI �= hII.

By incorporating these density-dependent handling
times, we get the following two-prey Holling type IV
functional response for the susceptible prey:

fS(S, I ) = aSS

1 + aShS0S + aIhI0I + aShSSS2 + (aShSI + aIhIS)SI + aIhIII 2
.

Likewise, the functional response for the infected prey is:

fI(S, I ) = aII

1 + aShS0S + aIhI0I + aShSSS2 + (aShSI + aIhIS)SI + aIhIII 2
.

If susceptible and infected prey do not contribute to
the same group defence, but instead contribute to their
own group defence, then we would have that hSI = 0 and
hIS = 0. In this case, we would have a functional response
comparable to that of two distinct species under a common
predator, both with their own group defence.

Other model assumptions

We consider an SI disease in the prey where disease
transmission is either frequency dependent (β(S, I ) =
βSI
S+I

)
or density dependent (β(S, I ) = βSI ), where

β is the transmissibility coefficient. All prey are born
susceptible, i.e. there is no vertical transmission. We
assume (for now at least) that infected preys have differ-
ent fertility, increased density-independent mortality and
different strengths of competition when compared to sus-
ceptible prey. Additionally, predators grow linearly with

respect to the predation and die at a constant per capita
rate.

dS

dt
= bSS+bII−mS−cSSS

2−cSISI−fS(S, I )P −β(S, I ), (1)

dI

dt
= β(S, I ) − (m+ μ)I − cISIS − cIII

2 − fI(S, I )P, (2)

dP

dt
= (γSfS(S, I ) + γIfI(S, I ) − d)P . (3)

Here, bS and bI are the per capita birth rates and
γS and γI are conversion efficiencies from consuming
susceptible and infected prey, respectively. cSS and cSI

represent density-dependent mortalities that susceptible
preys experience when encountering other susceptible and
infected prey, respectively. Likewise, cIS and cII repre-
sent density-dependent mortalities that infected prey expe-
rience when encountering other susceptible and infected
prey, respectively. Together, cSS, cSI, cIS and cII represent
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intra/interspecific competition. m is the natural per capita
(density independent) death rate of the prey,μ is the disease-
induced per capita death rate of the prey and d is the per
capita death rate of the predator andμ is the disease-induced
per capita death rate.

Simplified model

The full model (1–3) is rather complex, with 20 parameters
in a three-dimensional system. To mitigate this, we simplify
the model as much as possible as a starting point. We can
always, in the future, consider more complicated versions
once the simpler model is fully understood.

The simplifying assumptions are as follows: bS = bI(:=
b), cSS = cSI = cIS = cII(:= c), γS = γI(:= γ ), aS =
aI(:= a), hS0 = hI0(:= h0) and hSS = hSI = hIS = hII(:=
hN). These assumptions essentially can be summarised by
saying that infected and susceptible prey only differ by addi-
tional mortality for infected prey (μ > 0); that susceptible
and infected prey have the same birth rates, are equally good
competitors and have equal attack rates, handling times and
conversion. By implementing these assumptions, we cannot
only gather terms but also collapse the functional responses
to a single-prey form:
dS

dt
= b(S + I )−mS − cS(S + I )

− aSP

1 + ah0(S + I )+ ahN(S + I )2
− β(S, I ), (4)

dI

dt
= β(S, I )− (m+ μ)I − cI (S + I )

− aIP

1 + ah0(S + I )+ ahN(S + I )2 , (5)

dP

dt
= P

(
γ a(S + I )

1 + ah0(S + I )+ ahN(S + I )2
− d

)
. (6)

Working with total prey N = S+I instead of susceptible
prey and prevalence i = I

N
, i.e. the proportion of infected

prey in the prey population, instead of infected prey:

dN

dt
= (b −m)N − μiN − cN2 − aNP

1 + ah0N + ahNN2
,

(7)

di

dt
= i

((
β(N, i)

Ni(1 − i)
− μ

)
(1 − i)− b

)
, (8)

dP

dt
= P

(
γ aN

1 + ah0N + ahNN2 − d

)
. (9)

For frequency-dependent transmission, β(N, i) =
βNi(1 − i), whereas for density-dependent transmission,
β(N, i) = βN2i(1 − i).

To reduce the number of parameters further, we non-
dimensionalise the system. Let us rescale time such that the
predator’s death rate becomes one (t = 1

d
T ). Predator den-

sity is rescaled such that the numerator of the functional

response becomes one (P = d
a
y). Prey density is rescaled

such that the numerator of the predator’s numerical response
is scaled to one (N = d

γ a
x). Then, for frequency-dependent

transmission, Eqs. 7–9 become:

dx

dT
= (b′ −m′)x − μ′ix − c′x2 − xy

1 +H0x +Hxx2
,

(10)

di

dT
= i((β ′ − μ′)(1 − i)− b′), (11)

dy

dT
= y

(
x

1 +H0x +Hxx2
− 1

)
. (12)

The new parameters are the scaled prey birth
(
b′ = b

d

)
and death

(
m′ = m

d

)
rates, scaled disease-induced death

rate
(
μ′ = μ

d

)
, scaled density-dependent mortality(

c′ = c
γ a

)
, scaled transmissibility

(
β ′ = β

d

)
and the scaled

density-independent
(
H0 = h0d

γ

)
and density-dependent(

Hx = hNd2

aγ 2

)
handling time.

For density-dependent transmission, the only difference
from Eqs. (10–12) is that the prevalence Eq. (11) becomes:

di

dt
= i((β ′x − μ′)(1 − i)− b′), (13)

where β ′ = β
γ a

.
For simplicity of notation, we will drop the dashes. From

now on, we will only work with the non-dimensionalised
parameters, so there should be no confusion of notation.

These models are comparable with existing models; in
particular, setting m = 0 and Hx = 0, we obtain the dis-
eased prey model in Bate and Hilker (2013). Also, with this
scaling, we have reduced the model from an intraguild pre-
dation model to something resembling exploitative compe-
tition, as there is no direct interaction between predators and
disease prevalence (cf Sieber and Hilker 2011). In fact, for
density-dependent transmission, the model is exploitative
competition.

Now, for the frequency-dependent model, by defining
functions f (x) = x

h(x)
(functional response), g(x) = b −

m− cx (per capita growth rate of prey in absence of preda-
tors and disease), h(x) = 1+H0x+Hxx

2 (the denominator
of the functional response, or in other words, the total time
predators spend searching and handling prey relative to
search time) and p(i) = (β − μ)(1 − i) − b (per capita
growth in prevalence), we get:

dx

dT
= f (x)[(g(x)− μi)h(x)− y], (14)

di

dT
= i p(i), (15)

dy

dT
= y(f (x)− 1). (16)
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For the density-dependent model, p(i) becomes:

p(x, i) = (βx − μ)(1 − i)− b. (17)

With such functions, we can use analysis similar to that in
Kot (2001, Chap. 9) to establish the existence and stability
of steady states with relatively clear notation. In the rest of
the paper, we will always assume the prey can grow in the
absence of predator and disease, i.e. g(0) > 0 (equivalently,
b > m).

Disease-free predator–prey dynamics

Ignoring the disease, the predator–prey model is equiva-
lent to the model in Freedman and Wolkowicz (1986) and
Kot 2001, Chap. 9). Since these are existing results, we will
summarise and classify them into various Scenarios here.
However, for completeness, some of the steady state and
nullcline analysis is explained in the Appendix.

There are three different main Scenarios that can be
derived from the steady states:

– Scenario 1: There is no coexistent steady state. The
prey-only steady state is stable. This can be split into
(1A) no real solutions or (1B) only negative solu-
tions for the coexistent steady states. A phase plane of
Scenario 1B (top left of Fig. 1) has two vertical preda-
tor nullclines that do not intercept the humped prey
nullcline in the positive quadrant.

– Scenario 2: One coexistent steady state exists. It is
either (2A) stable or (2B) unstable and is the centre
of some stable limit cycle. This depends on the slope
of the prey nullcline, which is given by the sign of
∂y
∂x
(x∗) := y ′(x). Phase planes of Scenarios 2A and 2B

show that one of the predator nullclines intercepts the
humped prey nullcline in the positive quadrant, result-
ing in one predator–prey equilibrium and an unstable
prey-only steady state. If the interception occurs while
the prey nullcline is negatively sloped (i.e. to the right
of the maximum in the prey nullcline), the predator–
prey equilibrium is stable (Scenario 2A (top middle of
Fig. 1)); whereas, if the interception occurs while the
prey nullcline is positively sloped (i.e. to the left of the
maximum in the prey nullcline), the predator–prey equi-
librium is unstable and there is a stable predator–prey
limit cycle (Scenario 2B (top right of Fig. 1)).

– Scenario 3: Two coexistent steady states exist. The
coexistent steady state with the lower prey density is
either (3A) stable or (3B) unstable and is the centre of
some limit cycle. Again, this depends on the slope of
the prey nullcline, which is given by the sign of y’(x).
The stable steady state/limit cycle is bistable with the
prey-only steady state, where the higher prey density

coexistent steady state forms part of a separatrix. In the
phase planes of Scenarios 3A and 3B (Fig. 1 bottom
left and middle, respectively), both predator nullclines
intercept the humped prey nullcline, resulting in two
predator–prey steady states. The prey-only steady state
is stable and the ‘right’ coexistent steady state (i.e. the
coexistent steady state with the larger prey density) is
always unstable (saddle point). The difference between
Scenarios 3A and 3B is the same as the difference
between Scenarios 2A and 2B; the stability of the ‘left’
coexistent steady state (i.e. the coexistent steady state
with the smaller prey density) and the existence of a
limit cycle depend on where the interception is relative
to the maximum of the prey nullcline.

Scenarios 1 and 2 can be said to be the cases where group
defence is weak since these Scenarios are also possible for
a Holling type II functional response (i.e. the Rosenzweig–
MacArthur model). In Scenario 3, group defence is strong
enough to dominate dynamics for larger prey densities. This
is expressed by the stability of the prey-only equilibrium
and the bistability, which is not possible in the Rosenzweig–
MacArthur model. Note that the dynamics associated with
Holling Type II functional responses are still dominant for
smaller prey densities.

This list does not give all the information; there is also
a global bifurcation. Freedman and Wolkowicz (1986) and
Kot (2001, Chap. 9) demonstrate that the limit cycle in
Scenario 3B can collide with the saddle point to form a
homoclinic orbit. Beyond this homoclinic bifurcation, the
limit cycle disappears and the prey-only steady state is the
only stable steady state, like Scenario 1. Consequently, we
have another Scenario:

– Scenario 4: Two coexistent steady states exist, neither
are stable. No limit cycle exists due to a homoclinic
bifurcation. Only the prey-only steady state is stable. In
the phase plane of Scenarios 4 (Fig. 1 bottom right),
both predator nullclines intercept the humped prey null-
cline, resulting in two predator–prey steady states.

Scenario 4 means that there is no stable coexistence.
There may be, however, coexistent oscillatory transients
dynamics near the homoclinic bifurcation for some ini-
tial conditions, meaning that the eventual extinction of the
predator would not be apparent in short to medium time
scales. Figure 2 demonstrates this homoclinic bifurcation
with a phase plane ‘before’ (left) and ‘after’ (right) the
homoclinic bifurcation. In the left panel, we are in Scenario
3B, with the stable coexistent limit cycle and saddle point
are very close. The right panel is in Scenario 4, where the
limit cycle has disappeared after colliding with the saddle
point, leaving the prey-only steady state as the only stable
attractor, despite there being two coexistent steady states.
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Fig. 1 Sketched phase planes of different Scenarios from the disease-
free predator–prey model with group defence. These Scenarios
are: a stable prey-only equilibrium with no coexistent equilibrium
(Scenario 1B, top left); one stable coexistent equilibrium (Scenario 2A,
top middle); one unstable coexistent equilibrium surrounded by a sta-
ble coexistent limit cycle (Scenario 2B, top right); bistability between
a coexistent equilibrium and prey-only equilibrium (Scenario 3A, bot-
tom left); bistability between a coexistent limit cycle surrounding an

unstable coexistent equilibrium and a prey-only equilibrium (Scenario
3B, bottom middle); and finally a stable prey-only equilibrium with
two unstable equilibria and no limit cycle (Scenario 4, bottom right).
The dashed lines represent predator nullclines, the dotted lines repre-
sent prey nullclines, the white circles represent unstable steady states,
the black circles represent stable steady states and the loop represents
a stable limit cycle

Scenario 4 essentially means that the usual predator–prey
oscillations from the Rosenzweig–MacArthur model can-
not be fully contained in the region where prey densities
are small enough for group defence to be weak, and instead
encroaches into regions where group defence dominates.

Results: frequency-dependent transmission

In the previous section, we set the scene by describing the
predator–prey model in the absence of infection. Now, we
can incorporate a disease in the prey population. In this
section, we will analyse the frequency-dependent model
(14–16), and we will then tackle the more complicated case
of density-dependent transmission in the next section.

Coexistence between disease and predator

Observing that the prevalence equation (15) is completely
independent from both the predator and prey (since p(i) =
(β−μ)(1−i)−b), we can separate the prevalence equation.
From the prevalence equation, we have that the disease-free

state (i∗ = 0) is stable if p(0) = β−μ−b < 0. Otherwise,
if p(0) > 0, the disease-free state is unstable, the disease
will be endemic and disease prevalence will approach i∗ =
1 − b

β−μ
.

For the remainder of this section, we will assume that the
prevalence is at the equilibrium i∗ = 1 − b

β−μ
. Armed with

this quasi-stationary assumption, we can treat prevalence as
a constant, reducing the frequency-dependent model (14–
16) to the following 2D model:

dx

dT
= f (x)[(g(x)− μi∗)h(x)− y], (18)

dy

dT
= y(f (x)− 1). (19)

This model is the same as the disease-free predator–prey
model, except that there is an additional disease-induced
mortality in the prey. This additional term only alters the
‘humped’ non-trivial prey nullcline defined by y(x) =
(g(x)− μi∗)h(x).

Figure 3 demonstrates how this nullcline is changed.
Increasing prevalence alters two key points of the humped
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Fig. 2 Phase planes demonstrating the existence of a homoclinic
bifurcation and the resulting destruction of the stable limit cycle in the
disease-free model. a is a phase plane with bistability between a stable
predator–prey limit cycle and a prey-only equilibrium (Scenario 3B),
where the stable predator–prey limit cycle is close to the predator–prey
saddle point (c = 0.218); whereas b is a phase plane with no stable
limit cycle after a homoclinic bifurcation (c = 0.216). Here, all tra-
jectories eventually approach the prey-only steady state despite there
being two coexistent steady states (Scenario 4). The dashed lines rep-
resent nullclines. Other parameters: H0 = 0.2, Hx = 0.1, b = 2,
m = 0.5

nullcline: (1) the intercept with the horizontal axis (the prey-
only steady state) is moved left, i.e. prevalence reduces the
prey-only steady state, and (2) the maximum of the nullcline
y(x) is moved left, i.e. occurs at lower prey densities.

Loss of stability of the prey-only steady state

As prevalence increases, prey density at the prey-only
steady state is reduced. This reduction in prey carrying

capacity by the disease can become beneficial for the preda-
tor as it can shift the predator–prey system from Scenario
3 to Scenario 2, like in Fig. 3. This shift is important
since Scenario 3 means bistability involving a prey-only
steady state, whereas Scenario 2 means the predator will
always survive. In this case, the disease can help the
predator survive under conditions where it cannot sur-
vive without the disease due to unmanageable prey den-
sities. The presence of the disease does reduce preda-
tor density at the stable coexistent equilibrium, though,
but the loss of extinction risk at high prey densities
is significant (i.e. the disease can render group defence
ineffective).

Stabilisation of limit cycles

The shift of the maximum of the nullcline y(x) to the
left reduces or eliminates limit cycles (Fig. 3). In the
disease-free predator–prey system, limit cycles only occur
if the maximum of the nullcline y(x) is to the right (i.e.
at a higher prey density) of the coexistent steady state
with the lower prey density. By shifting this maximum
beyond the lower steady state, the limit cycle is elim-
inated and a stable steady state is formed. Thus, we
have that Scenario 2B/3B becomes Scenario 2A/3A. This
means that increasing prevalence should take Scenario 3B
to Scenario 2A via either Scenario 3A or via Scenario
2B.

Disease reversing global bifurcation

As we previously stated, there are significant parameter
regions in the predator–prey model where the prey-only
steady state is the only attractor despite the existence of two
coexistent steady states (Scenario 4). In these regions, the
predator cannot survive in the long run, independent of the
initial condition. However, the presence of a disease infect-
ing the prey can reverse this homoclinic bifurcation and
give rise to a stable predator–prey–disease limit cycle. This
means that the disease can facilitate coexistence where it
was impossible without the disease.

Overall pattern

Figure 4 demonstrates this reversal of a homoclinic bifur-
cation. In the absence of the disease (i∗ = 0), the preda-
tor cannot survive, despite there being two predator–prey
steady states. As the prevalence increases, the prey-only
steady state decreases. If disease-induced mortality is suf-
ficiently high, the disease can bring the prey steady state
close to the predator–prey saddle point. At the same time,
increased prevalence will reduce the slope of the prey null-
cline and shift the maximum to the left. Together, with



94 Theor Ecol (2014) 7:87–100

y y

Disease

x x

Fig. 3 Impact of disease on group defence in the frequency-dependent
model: sketch of the predator–prey phase plane with nullclines and
equilibria where x is prey density and y is predator density. Left-hand
figure is without disease. Here, there is bistability between the prey-
only equilibrium and a predator–prey oscillation, where the predator
cannot survive ‘beyond’ the separatrix saddle–point (unstable) equi-
librium (Scenario 3B). Including the disease has no effect on the

predator nullclines, but it ‘lowers’ the prey nullcline and moves the
maximum to the left and down (right-hand figure). These changes sta-
bilise the predator–prey oscillations and result in the prey-only steady
state losing stability. Consequently, with the disease, we have a stable
predator–prey equilibrium (Scenario 2A). The lines and circles have
the same meaning as Fig. 1

sufficiently large prevalence, a stable limit cycle will appear
as the homoclinic bifurcation is reversed. We have suddenly
moved from Scenario 4 to 3B. In this region, the predator
can survive with the right initial condition. However, if we
increase prevalence further, the prey-only steady state will
lose stability as it collides with the predator–prey saddle
point in a transcritical bifurcation (like in Fig. 3). After this
transcritical bifurcation, we will move to Scenario 2B where
the predator will survive no matter what the initial con-
dition. The next transition occurs when the predator–prey
limit cycle is stabilised by a Hopf bifurcation (like in
Fig. 3), leading to Scenario 2A. Increasing prevalence fur-
ther (i∗ > 0.6), the predator–prey steady state will collide
with the prey-only steady state in a transcritical bifur-
cation, resulting in the loss of the predator–prey steady
state and a stable prey-only steady state (Scenario 1). And
finally, if prevalence (and disease-induced mortality, μ)
is sufficiently high (i∗ > 0.75), the disease can wipe out
the prey population (i.e. if b < m + μ). This host extinc-
tion is a trademark of frequency-dependent diseases and
cannot happen in density-dependent diseases (see next
section).

Summary

For a frequency-dependent disease, the prevalence equation
is independent of prey or predator densities. Consequently,
the prevalence can be assumed to be fixed. With this in
mind, we find that the disease can coexist with the preda-
tor (Scenarios 2 and 3). On top of this, the disease can help
the predator by (a) keeping prey densities below densities
where prey group defence is strong; (b) stabilising predator–
prey cycles (preventing large booms and busts of predator
and prey populations); and (c) reversing the homoclinic

bifurcation, thus preventing the eventual extinction of the
predator. In particular, Fig. 4 demonstrates that with increas-
ing prevalence, we can go from a prey-only steady state
(Scenario 4) to bistability between the prey-only steady state
and a predator–prey limit cycle (Scenario 3B) to a predator–
prey limit cycle (Scenario 2B) to a predator–prey steady
state (Scenario 2A) to prey-only steady state (Scenario 1)
to diseased-induced extinction of the prey (and predator, of
course).

Results: density-dependent transmission

Unlike in the frequency-dependent model, we cannot sep-
arate the disease from the predator–prey dynamics in the
density-dependent model (14), (16) and (17). This means
that 2D phase plane analysis used in the disease-free and
frequency-dependent models cannot give the whole story.
In particular, it does not provide much insight into the
existence of more complex dynamics like chaos and quasi-
periodic dynamics. However, such phase plane analysis is
still very enlightening as a similar pattern of progressing
from Scenario 4 to Scenario 1 occurs.

Firstly, both oscillatory and equilibrial coexistence
between predator and disease prevalence also occur in the
density-dependent model. This coexistence is more interest-
ing and complex than in the frequency-dependent model as
the predator–prevalence–prey equations are in the form of
exploitative competition; thus this coexistence contradicts
the principle of competitive exclusion.

The coexistence is facilitated by the mixture of density-
dependent terms (i.e. the ‘1 − i’ terms) and density-
independent terms (in this case, ‘b’) in the per capita growth
rate for prevalence p(x, i). This means that the prevalence
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Fig. 4 Frequency-dependent model: Bifurcation diagrams of a prey
density and b predator density, with respect to prevalence equilibrium
i∗, showing the progression of Scenarios as prevalence increases. As
prevalence is assumed to be static, we can treat it as a control parame-
ter. In the absence of disease (i∗ = 0), only the prey-only steady state
is stable but two predator–prey steady states exist (Scenario 4). How-
ever, as we increase prevalence, we go from Scenario 4 to Scenario 3B
(bistability between predator–prey oscillations and prey-only steady
state) to Scenario 2B (only the predator–prey oscillations are stable) to
Scenario 2A (only the predator–prey steady state is stable) to Scenario
1 (only the prey-only steady state is stable) to prey extinction. Thick
black lines represent stable equilibria, thick grey lines represent sta-
ble oscillations and thin black lines represent unstable equilibria. ‘TC’,
‘HC’ and ‘Hopf ’ stand for transcritical, homoclinic and Hopf bifur-
cation, respectively. Other parameters: H0 = 0.2, Hx = 0.1, b = 2,
m = 0.5, c = 0.2 μ = 2. Figures produced using MATLAB, using
data from continuation software XPPAUT

nullplane (the values of (x, p, i) such that p(x, i) = 0) is
not fixed to a particular value of prey density but instead
exists for a range of prey densities. Since the predator
nullplanes have fixed prey densities, if one or more of these
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Fig. 5 Density-dependent model: Bifurcation diagrams of a prey
density, b prevalence and c predator density, with respect to trans-
missibility β. Together they show the progression from a stable
prey-only (or prey–disease) steady state with two other predator–prey
(or predator–prey–disease steady states) (Scenario 4); to bistabil-
ity between a coexistent limit cycle and prey–disease equilibrium
(Scenario 3B); to a coexistent limit cycle (Scenario 2B); to a coexistent
steady state (Scenario 2A). The stable limit cycle numerically breaks
down at ‘HC.’ The labels and lines have the same meaning as Fig. 4.
The trivial (no prey) steady state has been omitted. Parameter values
μ = 1.5, c = 0.05, b = 2, m = 0.5, H0 = 0.2 and Hx = 0.1
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prey densities lie within the range of prey densities for the
prevalence nullplane, coexistence will occur (subject to
positive predator densities and prevalence).

Secondly, the same Scenarios and transitions occur in
the density-dependent model as in the frequency-dependent
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Fig. 6 Complex dynamics in the density-dependent model: Bifurca-
tion diagrams of a (local) maximum predator density and b (local)
minimum predator density, with respect to transmissibility. For β �
0.6, we are in Scenario 4 and the predator cannot survive. At β ≈ 0.6,
a two-cycle (with respect to the predator) appears (i.e. there are two
local maxima and minima). At around β = 1, one of the local maxima
collides with a local minimum, resulting in the loss of both. Soon after-
wards, a period doubling cascade occurs, resulting in chaos. After this,
the second branch of maxima and minima reappears, but this time as a
chaotic attractor. In the interval β ∈ (1, 2), a series of attractor crises
occur. Parameter values: μ = 1.5, c = 0.2, b = 2, m = 0.5, H0 = 0.2
and Hx = 0.1. Using the initial condition (x, y, i) = (0.5, 0.5, 0.1),
we find the numerical solution (by using MATLAB’s ‘ode45’ and the
log-transform of equations (14–16), subject to Eq. 17, to avoid numer-
ical errors around zero) for time up to T = 7, 000 and then discard
transients (all data up to T = 4, 000)

model. For example, Fig. 5 demonstrates that increasing
transmissibility (as a proxy for prevalence and thus Fig. 5
is equivalent to Fig. 4) goes through the same transi-
tions, from Scenario 4 to Scenario 3B to Scenario 2B to
Scenario 2A, as Fig. 4 (except for Scenario 1, which occurs
for levels of transmissibility well beyond the range of Fig. 5,
and disease-induced extinction, which cannot happen in the
density-dependent model).

One novelty is that prevalence does not always increase
with transmissibility (Fig. 5c). In particular, the loss of
stability for the disease–prey steady state at the transition
between Scenarios 3B and 2B results in massive reduc-
tion of prevalence (although the predator–prey–disease limit
cycle will have short periods where prevalence is higher
than the disease–prey steady state).

Lastly, complex dynamics can occur. In the 2D predator–
prey and frequency-dependent models, the possible stable
dynamics are limit cycles and equilibria only. In 3D systems
like the density-dependent model, many more phenomena
can be found within regions of Scenarios 2B and 3B. An
example of such complex dynamics is Fig. 6.

In Fig. 6, there are several complex dynamics. After the
reversal of the homoclinic orbit (at approximately β =
0.6), the species coexist on a ‘two-cycle’ (note that both
predators and prey exhibit two local maxima and minima
each, whereas the prevalence, not shown here, exhibits only
one local maximum and minimum each). At approximately
β = 1, one branch of the attractor suddenly disappears as
one of the maxima collides with one of the minima. Note
that this branch emerges again in form of a chaotic attrac-
tor, as the remaining branch has undergone a cascade of
period doubling bifurcations. At around β = 1.8, the system
stabilises via a period halving cascade. But for parameter
values in between, the bifurcation diagram displays a num-
ber of different attractor crises, in which branches of the
attractor merge and split, or significantly change in size
out of the blue. This suite of attractor crises is indicative
of global bifurcations and in some way a more complex
analogue of the homoclinic bifurcation known from the
disease-free 2D predator–prey model. The non-local phe-
nomena characteristic of the Holling type IV predator–prey
model therefore persist, in increased variety, also in the 3D
model with disease. Hence, group defence tends to induce
sudden catastrophic changes in the qualitative dynamics.

Discussion

In this paper, we consider how an infectious disease in the
prey affects the predator–prey relationship where the prey
exhibits some kind of group defence against the predator.
We find that the disease can reduce prey densities to lev-
els where the group defence is not as strong. This allows
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predators to survive in situations where they could not
without the disease.

In the absence of the disease, there are three Scenarios
where the predator cannot survive: prey-only steady with
no other unstable steady states (Scenario 1), bistability
between prey-only steady state and predator–prey steady
state/oscillations (Scenario 3, survival depends on the start-
ing point) and a prey-only steady state with two unstable
predator–prey steady states (Scenario 4). The disease can
help the predator survive in the latter two cases. Firstly, the
disease can reduce the prey carrying capacity to densities
more manageable for the predator, moving from bistabil-
ity between a prey-only steady state and a predator–prey
steady state/limit cycle to where only the predator–prey
steady state/limit cycle is stable. On top of this, the dis-
ease can reverse a homoclinic bifurcation, going from just
a prey-only steady state to bistability between the prey-
only steady state and the predator–prey limit cycle. This is
due to the disease dampening the predator–prey oscillations,
keeping prey densities too small for group defence to domi-
nate. Combining these two phenomena together, we do have
cases that, with the disease, only the predator–prey steady
state/limit cycles are stable, whereas in the absence of the
disease, only the prey-only steady state exists. In this case,
the disease is helping the predator survive for all initial con-
ditions where it could not survive in the diseases absence.

Typically, both the predator and disease are in compe-
tition for prey hosts. In several models, this competition
leads to only one of the predator or disease persisting,
i.e. the predator/disease manages to keep prey/host density
low enough that the disease/predator population will even-
tually die out (for example, Hilker and Malchow (2006) and
Siekmann et al. (2010), although coexistence can occur if all
populations oscillate). Here, in both the density-dependent
and frequency-dependent models, there is a stable predator–
prey–disease equilibrium. This was also true in the diseased
prey models in Bate and Hilker (2013) and several extension
models in Table 6 of Anderson and May (1986), although
this was not elaborated in either paper. This is novel in itself,
especially for the density-dependent model, since the princi-
ple of competitive exclusion states that two consumers can-
not share a resource. Previously, counterexamples are the
result of temporal heterogeneity (Armstrong and McGehee
(1980), for example, via predator–predator–prey oscilla-
tions or spatial heterogeneity (Chesson 2000)). Here, we
have steady state coexistence, which is largely independent
of the choice of functional response (for example, using
linear and Holling type II functional responses would also
have steady state coexistence). In particular, it is indepen-
dent of group defence; however, with group defence, we
find that the disease not only coexists with predators, it can
also help predators survive where they could not without
the disease.

The counterexample of the principle of competitive
exclusion found in the density-dependent model occurs
because there is a mix of density-dependent and density-
independent terms in the prevalence equation (17). Gurney
and Nisbet (1998, pp.166–167) found that adding a density-
dependent mortality (a quadratic term) to one of the preda-
tors allowed both predators to coexist at equilibrium. This
can be generalised to other forms of density dependence like
predator interference (by using a Beddington–DeAngelis
functional response) in one or both predators. The rea-
son that density dependence defies competitive exclusion
is that it gives the predator a range of prey densities under
which it can be at equilibrium, and if the other consumer
can also survive at steady state in this range, coexistence
can occur. Without density dependence, the range is a
point which means coexistence generally cannot occur. The
same density dependence argument occurs in the density-
dependent model, in the prevalence equation (17), since the
mixture of density-dependent ((βx−μ)(1−i)) and density-
independent (b) terms means that prevalence can be static
for a range of x.

There are several key assumptions in this model that lead
to coexistence of both the disease and predator. For exam-
ple, if infected prey are completely sterile, then the b term
in prevalence equation (17) becomes b(1− i). With this, the
prevalence equation can only be static for i∗ = 0, 1 unless
prey density is x∗ = μ+b

β
, which is generally not true. Since

i∗ = 1 means all prey are infected and sterile (leading to
the extinction of the prey and predator), equilibrial coexis-
tence between predator and disease cannot occur in general.
Likewise, the lack of vertical transmission also allows for
coexistence (for example, in Hilker and Malchow 2006 and
Siekmann et al. 2010, there is perfect vertical transmis-
sion, an assumption that leads to the lack of equilibrial
coexistence).

For the frequency-dependent model, coexistence of
predator and disease is not as profound as is the case in
the density-dependent model. The prevalence equation 15
shows that the prevalence–prey equations follow amensal-
ism (disease prevalence has a negative effect on prey growth
but disease prevalence does not gain from higher prey
densities) and not exploitation. Consequently, the principle
of competitive exclusion does not apply for frequency-
dependent transmission.

Venturino (2011) tackled group defence from a different
perspective, leading to significantly different result. Instead
of a non-monotonic functional response like the Holling
Type IV used in this paper, he uses square root functional
response. This choice of functional response is based on
the idea that predators can only take prey on the outskirt
of the herd and thus the functional response should be pro-
portional to the perimeter of the herd. However, Venturino
(2011) assumes this only applies to susceptible prey since
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infected prey are assumed to leave the herd and thus expe-
rience a linear functional response. The resulting dynamics
are less complicated in their model, only equilibria and
limit cycles seem to occur with no bistability. Coexistence
between predator and prey can occur as well as cases where
the disease helps the predator survive. In this paper, bista-
bility occurs in Scenario 3 and more complex dynamics can
occur in the density-dependent model.

Previous eco-epidemiological models have demonstrated
equilibrial coexistence between predator and disease for the
prey host invariably, but those models cannot be simpli-
fied to a exploitative competition model. Instead, they can
only be simplified to an intraguild predation or food chain
model (in particular, Venturino (2011)). As such, coexis-
tence between predator and disease is expected. There is one
model that looks like exploitative competition and has coex-
istence (Das et al. 2009), but this coexistence occurs because
the predator grows logistically in the absence of prey, so
implicitly the predator has another resource.

For brevity, we have not looked into the case where the
prey nullcline has both a maximum and a minimum (see
Appendix). In this case, steady states with low prey density
are stable, likewise for high prey density (i.e. Scenarios 2A
and 3A), but for moderate densities, the steady state is unsta-
ble (i.e. Scenarios 2B, 3B and 4). Given this nullcline will
probably flatten, move to the left and eventually lose both
extrema as we increase prevalence/virulence, it seems plau-
sible that there may be some prevalence region where we
are in Scenario 4 whereas without the disease we would be
in Scenario 3A or 3B. However, further increases in preva-
lence/virulence would reverse this and go through the usual
pattern from Scenario 4 to Scenario 3 to Scenario 2 and so
forth.

In this paper, we derive a general ‘two species’ Holling
type IV functional response incorporating a handling time
that is linear with respect to prey density to a Holling type
II functional response. This formulation, although straight-
forward, seems novel as multispecies Holling type IV func-
tional responses are rarely considered and single species
Holling type IV functional responses are usually stated and
not derived and explained. In particular, assuming that han-
dling time is a linear function of prey density seems to be
the simplest assumption in deriving a single species Holling
type IV functional response.

For simplicity, we assumed that the infected prey and
susceptible prey are equivalent. Although the full model is
cumbersome, future investigations could relax some of these
simplifying assumption. For example, we could assume that
infected prey may contribute less to the group defence.
The authors suspect that if a disease does weaken group
defence by more than just reducing host density, the disease
could even further benefit the predator by increasing preda-
tor density and not just by eliminating extinction risk. In

particular, if the disease is trophically transmitted (we have
direct transmission in this paper), it may be beneficial for
the disease if the infected prey break down group defence
to aid transmission to predators. This should depend on rel-
ative importance for the disease of the effect on prey to
predator transmission as well as the greater predator num-
bers and lower prey numbers caused by the breakdown of
group defence. However, by doing so, the resulting eco-
epidemiological system would almost certainly result in
more complicated intraguild predation.

To conclude, we find that predator and disease can coex-
ist at steady state, contradicting the principle of competition.
On top of this, in some cases where group defence in the
prey is prominent, coexistence between prey and predator
can often benefit from the presence of the disease, either by
reversing a homoclinic bifurcation or by reducing the prey
density below a group defence threshold.

Appendix: steady state analysis

Disease-free model

From steady state analysis, we have the following condi-
tions for each Scenario (assuming b > m):

– Scenario 1: There is no coexistent steady state. Prey-
only steady state is stable. (1A)H0 > 1 or (H0 − 1)2 −
4Hx < 0 (no real solutions), (1B)H0 < 1, (H0 − 1)2 −
4Hx > 0, b−m

c
<

(1−H0)±
√

(H0−1)2−4Hx

2Hx
(two negative

solutions).
– Scenario 2: One coexistent steady state exists. It is

either (2A) stable or (2B) the centre of some stable
limit cycle (depending on the sign of y ′(x∗)) (H0 < 1,

(H0−1)2−4Hx > 0, (1−H0)−
√

(H0−1)2−4Hx

2Hx
< b−m

c
<

(1−H0)+
√

(H0−1)2−4Hx

2Hx
(one positive and one negative

solution))
– Scenario 3: Two coexistent steady state exists. The co-

existent steady state with the lower prey density is
either (3A) stable or (3B) the centre of some limit cycle
(depending on the sign of y ′(x∗)). This is bistable with
the prey-only steady state,where the higher prey density
coexistent steady state acting as a separatrix. (H0 < 1,

(H0 − 1)2 − 4Hx > 0, (1−H0)±
√

(H0−1)2−4Hx

2Hx
< b−m

c

(two positive solutions))

Frequency-dependent model

The conditions are the same for the frequency-dependent
model as for the disease-free model except you must substi-

tute m with m + μi∗, where i∗ = max
(

0, 1 − b
β−μ

)
. Note



Theor Ecol (2014) 7:87–100 99

that if b < m+μi∗, then the disease will cause the extinction
of both predator and prey.

Density-dependent model

The steady states (x, y, i) are:

– (0, 0, 0) always exists and is stable if b < m

– (x∗, 0, 0), where x∗ = b−m
c

. This exists when b > m

and is stable when f (x∗) < 1 (i.e. predators cannot
survive) and βx∗

μ+b
< 1 (i.e. disease cannot spread)

– (x∗, 0, i∗) where x∗, i∗ solve p(x∗, i∗) = 0 and
g(x∗) = μi∗. This exists when x∗ > 0 and i∗ > 0 (i.e.
b > m and βx∗

μ+b
> 1). It is stable if f (x∗) < 1 (i.e.

predators cannot survive)
– (x∗, y∗, 0), where x∗ solves f (x∗) = 1 (i.e. x∗ =

(1−H0)±
√

(H0−1)2−4Hx

2Hx
) and y∗ = g(x∗)h(x∗). This

exists if x∗ > 0 and g(x∗) > 0 (i.e. H0 < 1,
(H0 − 1)2 − 4Hx > 0 and x∗ < b−m

c
). This means

there can be up to two such steady states . It is stable
if βx∗

μ+m
< 1 (i.e. disease cannot invade), f ′(x∗) > 0

and h(x∗)g′(x∗) + h′(x∗)g(x∗) := y ′(x∗) < 0. If
f ′(x∗) < 0, then this steady state is a saddle point,
whereas if f ′(x∗) > 0 and y ′(x∗) > 0, we have that the
steady state in unstable and is surrounded by a stable
limit cycle. The sign of f ′(x∗) depends on the rela-
tive values of x∗ (when two steady states occur); the
smaller x∗ has f ′(x∗) > 0, whereas the larger x∗ has
f ′(x∗) < 0.

– (x∗, y∗, i∗), where x∗ solves f (x∗) = 1 (i.e.

x∗ = (1−H0)±
√

(H0−1)2−4Hx

2Hx
), i∗ solves p(x∗, i∗) = 0

and y∗ = (g(x∗) − μi∗)h(x∗). This exists if x∗ > 0
(i.e. H0 < 1 and (H0 − 1)2 − 4Hx > 0), i∗ > 0 (i.e.
βx∗
μ+m

> 1) and y∗ > 0 (i.e. g(x∗) > μi∗). This means
that there can be up to two steady states. By using
qualitative stability criteria on the Jacobian at these
steady states, we have that the system is definitely sta-
ble when f ′(x∗) > 0 and ∂y∗

dx∗ (x
∗, i∗) < 0. Likewise,

if f ′(x∗) < 0, then the Jacobian has a positive deter-
minant which means the steady state is unstable. If
∂y∗
dx∗ (x

∗, i∗) > i(βx∗−μ)
f (x∗) , then the Jacobian has a positive

trace which means the steady state is unstable. Conse-
quently, we only do not know the stability for the region
f ′(x∗) > 0 and 0 <

∂y∗
dx∗ (x

∗, i∗) < i(βx∗−μ)
f (x∗) , presum-

ably there is a Hopf bifurcation within this region (like
the disease-free case). Like the predator–prey case,
there can be up to two steady states.

This steady state analysis can be summarised into the
same Scenarios as before, but some of the criteria have
not been fully analysed. In particular, the Hopf bifurca-
tion separating Scenario 2A/3A and 2B/3B has not been
found.

Phase plane analysis

To complement the steady state analysis, we can use phase
plane analysis to derive and demonstrate the different
Scenarios (Figs. 1 and 2). For simplicity, we will use null-
clines to refer to both the nullclines of the predator–prey
system and nullplanes of both the frequency and density-
dependent models.

There are up to three different predator nullclines. The
predator-free nullcline (y = 0) always exists. The other two
nullclines are the roots (if they exist) of the quadratic equa-
tion derived from f (x) = 1. These roots are always positive
when they exist.

There are two different prey nullclines; one is the prey-
free nullcline (x = 0), the other nullcline is derived from
y = h(x)(g(x) − μi). The latter nullcline is in fact cubic
with respect to x. Assuming that b > m+μi, then the inter-
cept at x = 0 is positive, and there is one intercept with
y = 0 at g(x) = μ′i. Given that the nullcline is cubic with
respect to x, there can be up to two local extrema. Thus the
nullcline can have:

– no realistic (positive) extrema (y ′(0) < 0 and y ′(x) has
no positive (or real) roots).

– two realistic (positive) extrema (y ′(0) < 0 and y ′(x) has
two positive roots). These extrema are one local min-
imum and one local maximum, the minimum occurs
at lower prey density than the maximum. The region
between these two extreme has a positive slope y ′
(x) > 0.

– only one positive local maximum (y ′(0) > 0)

For simplicity, we will consider the third type of (disease-
free) nullclines. The first case will not have a limit cycle,
as y ′(x) < 0 for all x > 0. This means only Scenarios 1,
2A and 3A can occur. The second case is a little more
complex than the third case, but the same arguments still
apply. In fact, the only difference is that for small prey
densities (lower than the local minimum), y ′(x) < 0 and
thus steady states can be stable here. In between the max-
imum and minimum, limit cycles are likely to occur. This
formulation does not add any new Scenarios but may change
the order of Scenario changes when we increase preva-
lence. In particular, it seems plausible that the disease
may destabilise the predator–prey equilibrium if the dis-
ease moves the minimum to a lower prey density than
the lower predator nullcline (i.e. going from Scenario 2A
to Scenario 2B or from Scenario 3A to Scenario 3B
or 4).

There are at most two disease nullclines, the disease-free
nullcline i = 0 and the endemic nullcline p(i, x) = 0. In the
frequency-dependent model, the endemic nullcline is i =
1 − b

β−μ
.
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