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HIGHLIGHTS

» Consider a density dependent disease of a host in a predator-prey oscillation.
» Basic reproductive number (Rp) is based on time average of the oscillations.

» In particular, Ry is not based on the equilibrium it oscillates around.

» The reason is that time-averaged host density differs from equilibrium density.
» This undermines the usual equilibrium-based ‘Ry’ for predator-prey cycles.
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In epidemiology, knowing when a disease is endemic is important. This is usually done by finding the
basic reproductive number, Ry, using equilibrium-based calculations. However, oscillatory dynamics
are common in nature. Here, we model a disease with density dependent transmission in an oscillating
predator-prey system. The condition for disease persistence in predator-prey cycles is based on the
time-average density of the host and not the equilibrium density. Consequently, the time-averaged
basic reproductive number Ro is what determines whether a disease is endemic, and not on the
equilibrium-based basic reproductive number R§. These findings undermine any R, analysis based
solely on steady states when predator-prey oscillations exist for density dependent diseases.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In epidemiology, the classical method of determining whether
a disease will be endemic or die out is by finding the basic
reproductive number Ry. The basic reproductive number is under-
stood as the number of secondary infections from an infected
individual, during its infectious period, in an otherwise purely
susceptible host population (although more general definitions
are available, see Bacaér and Ait Dads, 2012; Inaba, 2012). If the
basic reproductive number is less than one, the disease will not
survive, whereas if the basic reproductive number is greater than
one, the disease will spread. Typically, this is calculated based on
a constant population. However, not all populations are at
equilibrium.

Oscillatory dynamics has recently become the focus of many
epidemiologists studying both human and wildlife diseases.
Although endogenous oscillations like predator-prey oscillations
are mentioned occasionally (for example Greenman and Norman,

* Corresponding author. Tel.: +44 1225 386989.
E-mail address: A.M.Bate@bath.ac.uk (A.M. Bate).

0022-5193/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jtbi.2012.09.013

2007), the investigations that follow are invariably on exogenous
oscillations caused by external forcing. These exogenous oscilla-
tions include periodic or stochastic forcing caused by seasonality,
multi-annual periodic events like El Nifio and anthropogenic
interventions (Altizer et al, 2006; Greenman and Norman,
2007). Of these, seasonality is probably the most prominent.
For example, Grassly and Fraser (2006) state that there are four
types of causes of seasonality in human infectious diseases:
(a) survival of pathogen outside host; (b) host behaviour;
(c) host immune function; and (d) abundance of vectors and
non-human hosts.

Within this body of work, it has been shown that some exogenous
oscillations can shift the endemic threshold (Greenman and Norman,
2007; Bacaér and Abdurahman, 2008; Nakata and Kuniya, 2010, for
example). However, populations frequently cycle as the result of
endogenous mechanisms. Density-dependence, delay effects and
ecological interactions are probably the most prominent of numerous
examples (Turchin, 2003). Predator-prey oscillations are particularly
iconic,and the field of eco-epidemiology has begun studying the
impact diseases have on ecological relationships like predator-prey
interactions (and vice versa). So far, it has largely been assumed that
the criteria for the disease becoming endemic is the same for
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predator-prey equilibria and oscillations. For example, papers based
on Rosenzweig-MacArthur dynamics have ignored the possibility
that they are different (for example Chattopadhyay and Arino, 1999;
Chattopadhyay et al., 2003; Haque and Chattopadhyay, 2007; Bairagi
et al., 2007). However, Hadeler and Freedman (1989) noted that the
endemic thresholds are different for equilibria and oscillations, but
they did not explain why. This phenomenon has only recently been
rediscovered by Kooi et al. (2011), where they briefly noted that the
endemic thresholds are not the same, but they did not explain why
either. In short, the consequences of oscillatory dynamics caused by
predator-prey oscillations on disease establishment have not been
thoroughly investigated and have often been overlooked.

In this paper, we find that the basic reproductive number for a
disease is different from the value derived from the (unstable)
equilibrium when the host is involved in predator-prey oscilla-
tions. This is the result of the basic reproductive number being
based on the time average of the predator-prey oscillations and
not on the corresponding predator-prey equilibrium. Two eco-
epidemiological models are developed to demonstrate these
results. One considers an SI disease in the predators, whereas
the other considers an SI disease in the prey. In both models,
transmission is density dependent, although we later consider the
frequency dependent case as well.

Throughout this paper, we will refer to the equilibrium-based
basic reproductive number as Rj and the time-averaged basic
reproductive number as Ry. These ‘decorations’ allow us to distin-
guish these numbers from the actual basic reproductive number, Ro.

2. The models

The models used are based on the Rosenzweig-MacArthur
model, i.e. logistic growth of prey, Holling type II functional
response and exponential decay of the predator without prey.
Hence, the underlying scaled predator-prey model is

dN NP

@ ="NA-N)— = )
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where N is the prey density and P is the predator density, r is the
per-capita growth rate for the prey (when rare), m is the per-
capita natural death rate for the predator, and h is the half-
saturation density for the Holling type II functional response.

We will assume that there is an SI disease with density
dependent transmission. This means that the disease will split
the host population into a susceptible population (S) and an
infected population (I). There is one model where the disease
infects predators and an equivalent model with the disease
infecting the prey. Here we will assume in both models that the
disease causes more deaths, but that infected individuals are
otherwise identical to susceptible individuals (unless otherwise
stated, like in Section 4). On top of this, all newborns are assumed
to be susceptible, i.e. there is no vertical transmission.

We will formulate the models in terms of the total predator
and prey populations and the prevalence of the disease in the host
population, i.e. the fraction of hosts that are infected. In other
words ip=§ = 't and iy= =,

where Ip (Iy) and Sp (Sy) are the infected and susceptible
predator (prey) densities, respectively (the original SI models
can be found in Appendix A). This scaling is used to demonstrate
the effect the disease has on the host in the predator-prey
system, something that is not immediately clear when the host
population is in two classes. Notice that ip and iy can take any

value between 0 and 1, where a value of zero means that there is
no disease and a value of one means that every host is infected.

The scaling and parameters are equivalent to those in Hilker
and Schmitz (2008); their model being the same as the diseased
predators model except they used frequency dependent infection.

2.1. Diseased predators model
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2.2. Diseased prey model

dN NP .

v T rN(1 —N)——h+ § —HNin, (6)
diy . .

ar IN((BN—)(1—in)—1), @
dP NP

dt = hen P ®

In both models, u is the disease-induced death rate and f is
the disease transmissibility. In the diseased prey model, r is
defined as a per capita birth rate instead of a growth rate, i.e.
there is no density independent mortality (see A.3 for details).
This means that susceptible prey only experience mortality via
predation and competition.

Parameter values are chosen such that the predator-prey
system has a stable limit cycle in the absence of the disease (i.e.
m < (1-h)/(1+h)). Throughout this paper, any variable that is
‘starred’, e.g. P*, refers to the (unstable) steady state of that
variable. Likewise, any variable that has a ‘bar’, e.g. P, is the
time-average of that variable. In this paper, the time-average (of
P, say) is defined as P = (1/T) fOTP dt, where T is the period of the
predator-prey limit cycle.

3. Results

Several papers have calculated Ry in a periodic environment
(Bacaér and Guernaoui, 2006; Wang and Zhao, 2008; Wesley and
Allen, 2009, for example). Here, we find Ry by using a Floquet
theory argument. However, we only need to focus on the
infecteds/prevalence equations since the predator-prey cycles
are stable in the original Rosenzweig-MacArthur model (1)-(2).
The details of this argument are in A.3. However, it is worth
noting that all Ry’s can be found directly by using the method in
Bacaér and Guernaoui (2006, Eq. (31)).

3.1. Diseased predators

Fig. 1a shows when a disease establishes in an oscillating
predator host, as a function of transmissibility, f. For low
transmissibility, the disease is not endemic and only disease-
free predator-prey oscillations are stable. At R§ =1, an unstable
endemic equilibrium bifurcates from the unstable disease-free
predator-prey equilibrium. For some region after this (the grey
region), we have stable disease-free oscillations with an unstable
endemic equilibrium, i.e. the disease is not endemic despite
R§>1. At Ry =1, a stable endemic limit cycle bifurcates from
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the stable disease-free predator-prey limit cycle. Beyond this, the
disease is endemic in oscillation until the stable oscillations and
unstable equilibrium collide at a Hopf bifurcation, giving rise to a
stable endemic equilibrium.

The crucial point of Fig. 1a is that the system remains disease-free
(zero prevalence) in a parameter range well beyond R}, > 1, where R}
is the equilibrium-based basic reproductive number R = P*/(m+ )
and P* is the predator density at the disease-free predator-prey
equilibrium. This means that the system remains disease-free for a
larger parameter range because of the oscillatory dynamics.

Fig. 1b demonstrates that this difference can be attributed to the
difference in the time-averaged density of the predator between the
equilibrium and oscillations (a corollary of results in Armstrong and
McGehee, 1980). A disease is endemic only when the time-averaged
basic reproductive number Ry = P/ (m+p)>1, where P is the
time-average predator density for the disease-free predator-prey
oscillations (see Appendix A). The dotted line representing Ro(ff) =1
gives the invasion condition for a disease, i.e. the critical host density
required for the disease to establish. This means that a disease can
only become endemic if the time-averaged predator density is above
the dotted line. Note that the dotted line intersects both the
(unstable) predator-prey equilibrium and the time-average of the
predator-prey oscillations at the transcritical bifurcations where
the disease becomes endemic. This is consistent with the fact that
R} and R, differ only because the (time-averaged) host densities of
the disease-free equilibrium and oscillations are different.

3.2. Diseased prey
Fig. 2a demonstrates that the (stable) endemic oscillations bifur-

cate from the disease-free predator-prey oscillations before the
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(unstable) endemic equilibrium bifurcates from the disease-free
equilibrium. This contrasts with Fig. 1a where the oscillations
bifurcate after the unstable equilibrium bifurcates. Hence there is a
region (the grey region) where the disease is endemic in oscillations
despite Rf < 1. This means that a disease in the prey host becomes
endemic at a smaller transmissibility () than expected from the
standard calculation of the equilibrium-based basic reproductive
number Rj = BN*/(u+P*/(h+N*)+rN*), which can be simplified
to Ry = BN*/(u+r), where N* and P* are the respective prey and
predator densities at the disease-free predator-prey equilibrium.
Instead, the invasion criterion is Ry =1, where Ry =fN/(u+
P/(h+N)+rN)= N /(u+r) is the time-averaged basic reproductive
number (see Appendix A). Since the predator-prey oscillations have a
larger time-averaged prey density than the equilibrium (Armstrong
and McGehee, 1980), Ry has a smaller threshold value of  to become
endemic. This means that the disease will find it “easier” to become
endemic because of the oscillatory dynamics. The dotted line in
Fig. 2b demonstrates that this change in critical f can be solely
attributed to the difference between N* and N.

3.3. Summary

In this section, we have described the difference between the
equilibrium-based basic reproductive number Rj and the time-
averaged basic reproductive number R, for predator-prey oscilla-
tions. In all cases we have that Ry = Rg. At equilibrium, Ry = Ry = R§.
However, in oscillations, we generally have Ry = Ry # R}

On a side issue, both the diseased predator and diseased prey
models demonstrate that the disease can stabilise an oscilla-
ting predator-prey system by increasing total host mortality (for a
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Fig. 1. Diseased predators model: Time-averaged bifurcation diagram of (a) prevalence and (b) predator (host) density, with respect to the disease transmission parameter
. The grey region highlights where the disease is not endemic despite the equilibrium-based reproductive number being greater than one, i.e. ip=0 and Rj > 1. Thick lines
mean stable equilibria, thin lines mean unstable equilibria, black (white) circles are time-averages of stable (unstable) oscillations. The dotted line in (b) represents
Ro(f)=1 and goes through both R =1 and Ry = 1, demonstrating that host time-averaged density alone explains the difference in disease invasion. (Parameter values:

n=0.5r=2,h=0.3 and m=0.3.)
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Fig. 2. Diseased prey model: Time-averaged bifurcation diagram of (a) prevalence and (b) prey (host) density, with respect to the disease transmission parameter f.
The grey region highlights where the disease is endemic despite the equilibrium-based reproductive number being less than one, i.e. iy > 0 and R} < 1. The lines and circles
have the same meaning as those in Fig. 1. (Parameter values: =1, r=1, h=0.3 and m=0.3.)
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sufficiently large u and ), in a manner similar to that in Hilker and
Schmitz (2008).

4. Extensions
4.1. Disease alters density dependent mortality in prey host

Previously, infected prey experienced the same density depen-
dence as susceptible prey. We will now change this assumption by
letting infected prey experience a different level of density depen-
dence than susceptible prey. Henceforth, we will assume that
susceptible prey have a density dependent mortality term of rSN
(since the carrying capacity has been scaled to one), whereas infected
prey have a density dependent term rcIN (see Appendix A). Here, c is
a coefficient that defines the density dependent mortality infected
prey experience relative to susceptible prey. If c=1, then the total
density dependent mortality becomes rN?, which is the same as in
the original diseased prey model.

While this formulation accounts for different competitive
pressures experienced by susceptible and infected individuals, it
implies that both susceptibles and infected exert the same
competitive strength on an individual they interact with. This is
a simplifying assumption and in general is not true. In fact,
(Hochberg, 1991) argues that there are four different terms of
density dependence in an SI model; the density dependence that
(i) susceptibles inflict on susceptibles (called oss), (ii) susceptibles
inflict on infected (oys), (iii) infected inflict on susceptibles (o)
and (iv) infected inflict on infected (oy). However, since we can
assume that there are negligibly few infected individuals when
finding R} or Ro, the density dependent mortalities caused by
infected individuals (cases (iii) and (iv)) are negligible on the
calculation of Rf and Ro. This means that Rf and Ry found here are
the same as those in a full four-case density dependent model,
where r = oss and rc = oys.

Now, incorporating this assumption into the diseased prey
model, we get

dN . . NP .

G = NA=N(A—in)+c in)— = —HNin, C)

diy . .

dr = IN(BN—p=rN(c=1)(A ~in)-1), (10)
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In A.3, we demonstrate that

Ro N (12)

0= U+r+r(c—1N’

as well as R = N*/(u+r+r(c—1)N*).

If ¢ # 1, then the denominator of Ry depends on N and we get
an overall expression for Ry that is hyperbolic rather than linear in
N. If we assume that infected suffer more from density dependent
mortality than susceptibles (because they are at a disadvantage in
competition), then we have c > 1. The expression for Ry is then
much like a Holling type II functional response. This means that
Ry still monotonically increases with respect to N, but it saturates
to Romax = B/r(c—1). A corollary of this is that the disease can
never be endemic if ff<r(c—1). However, saturation happens
beyond all feasible values of N; consequently, we have Ry is
‘sublinear’ with respect to N (Fig. 3).

Now suppose c <1, i.e. infected prey are better competitors
than susceptible prey. (While this assumption seems unrealistic
at first glance, Sieber, Malchow and Hilker (in preparation) find
that this is possible if density dependence is due to exploitative
competition where infected take up less resources. If infected take

0 02 04 06 08 1 1.2
Prey Density (N)

Fig. 3. Density dependent mortality: plots of Ry as a function of host density. This
figure demonstrates, with respect to N, Ry is sublinear for ¢ > 1, linear for c=1 and
superlinear for ¢ < 1. Replace Ry and N with R§ and N* or Ry and N to get the
equivalent figure of Ry and Ry, respectively. The vertical line represents the
disease-free carrying capacity of the prey. Parameter values: f=2, u=0.5, r=1,
c=2 (sublinear) and ¢=0.5 (superlinear).

up less resources, one would expect that infected would have a
smaller reproductive rate than susceptibles. Here, however, both
populations have the same birth rate. Hence this may not be
compatible with ¢ <1.) Notice that although Ry, does have an
asymptote and can be negative for large enough N, such values of
N can never be attained since N is bounded above by the disease-
free carrying capacity, i.e. N <1. This means that Ry is ‘super-
linear’ and monotonically increasing for all feasible values of N
(Fig. 3).

Using (8/0in)(dN/dt), we get that N increases with iy if
u+r(c=1)N <0. In particular, if g<r(1-c), the prey host at
disease-free carrying capacity (i.e. no predators) will increase in
density as the disease establishes in the population. This means a
disease that reduces density dependent mortality can benefit the
infected host if this reduction is greater than the additional
disease-induced mortality. If this is the case (which at the
moment is hypothetical), the disease will increase the total host
population.

4.2. Frequency dependent transmission

One key assumption in all the previous models in this paper is
density dependent transmission. Incorporating frequency depen-
dent transmission into the model (9-11), the prevalence equation
becomes:

di . .
d_’tV = in((f—p—1N(c=1))(1—in)—T). (13)

The only difference between this and the previous prevalence
equation is that SN has become just 8. Using the same arguments
as before, we get that Ri=p/(u+r+r(c—1)N*) and Ry =p/
(u+r+r(c—1N). If c=1, i.e. we are working with the frequency
dependent transmission version of the original diseased prey
model, we have that R = Ry = 8/(¢+r). This means that the basic
reproductive number is independent of host density, whether
oscillatory or not. However, if ¢ > 1, we have that Ry is mono-
tonically decreasing with host density N. This means that disease
is endemic when the population is sufficiently small, i.e.
N < (B—pu—r)/r(c—1). If c < 1, then Ry is monotonically increasing
with host density. Here, the disease is endemic if the population is
sufficiently large, i.e. N > (—u—r)/r(1—c).

5. Discussion

We have demonstrated that the conditions for a disease to
become endemic in a host involved in a predator-prey relationship
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depend on the time-averaged host density. Rosenzweig-MacArthur
predator-prey dynamics are used to show this. Oscillations in
such a model have a greater time-averaged prey density and lower
time-averaged predator density compared to the corresponding
(unstable) equilibrium. This means that predator-prey oscillations
make a disease easier to become endemic in a prey host and harder
to become endemic in a predator host.

These explanations could also explain the differing basic repro-
ductive numbers observed in Kooi et al. (2011) and make some
progress towards explaining the basic reproductive number argu-
ment from Hadeler and Freedman (1989). The latter is not straight-
forward since the disease in their model infects both the prey and
predator and only by cross-infection (i.e. infected prey infect
susceptible predators and infected predators infect susceptible
prey), which complicates the pattern of transmission (see
Appendix B for a model description). However, Fig. 4a demonstrates
that the disease is not endemic when the hosts cycle despite having
an equilibrium-based basic reproductive number greater than one,
ie. R >1 (like the diseased predator model). Likewise, Fig. 4b
shows that the disease is endemic when the hosts cycle despite
having an equilibrium-based basic reproductive number less than
one (like the diseased prey model). This means that the
equilibrium-based basic reproductive number does not give either
an upper nor lower bound for when a disease is endemic in
predator-prey oscillations. With two infected compartments, the
model in Hadeler and Freedman (1989) is considerably more
complicated that the diseased predators or diseased prey models.
In another model with two infected compartments (Bacaér, 2007, a
malaria model with seasonality in the vector), it was shown that
the actual endemic threshold is based on the time-averaged
reproductive number with a correction based on the size of the
oscillations. Assuming something similar occurs here, the difference
in endemic thresholds between predator-prey oscillations and
equilibria in Hadeler and Freedman (1989) can largely be explained
by the difference in the time-averages, but this difference alone
does not give the full picture.

This can have major consequences for disease management
and epidemiology. Firstly, it undermines the idea that the
equilibrium-based basic reproductive number determines
whether a disease would invade deterministically. This somehow
resembles the scenario of a backward bifurcation, where a disease

0.012

Infected prey, x )

Susceptible predator, Yo

Susceptible prey, x

may persist (depending on initial conditions or the “history” of
the population) even though Ry < 1. Conversely, other bifurca-
tions like saddle-node bifurcations or homoclinic bifurcations can
lead to the disappearance of disease even though Ry > 1, but this
typically involves host extinction as well (Hilker et al., 2009;
Hilker, 2010). Consequently, if oscillations exist in the disease-
free predator-prey system, care must be taken when using
reproductive number arguments based on equilibria as one
cannot assume that they are the same for oscillations (like those
in Hilker and Schmitz, 2008; Das et al., 2011).

Secondly, there can be profound consequences for the eradica-
tion of diseases within predators. A common strategy to help
eradicate a disease from a wildlife host is indiscriminate culling or
harvesting of the host. For example, hunting/harvesting/culling
has been used for controlling chronic wasting disease in some
species of deer and elk (Williams et al., 2002), bovine tuberculosis
in badgers (Woodroffe et al., 2002) and facial tumour disease in
Tasmanian devils (Beeton and McCallum, 2011). However, har-
vesting/indiscriminate culling corresponds to effectively increas-
ing the constant per-capita death rate. Applying this to a predator
population will not decrease, but rather increase the time-average
predator density, if the system is cyclic. (This phenomenon is
called the hydra effect Abrams, 2009; Sieber and Hilker, 2012.)
Hence, harvesting will increase disease prevalence in predators
and is therefore counter-productive as a control approach.

In contrast, a management action that can be recommended on
the basis of this paper is to enforce endogenous oscillations in an
otherwise stable population. The oscillations could bring the time-
averaged basic reproductive number Ry below one, even though
without oscillations Rfj is greater that one, resulting in long term
disease eradication. One such way of forcing oscillations is to utilise
the paradox of enrichment by increasing the prey’s carrying capacity,
which will destabilise the predator-prey system.

Lastly, for prey as a host population, a disease will spread more
easily under predator-prey oscillations than at equilibrium, thus
making eradication harder. Actions that stabilise predator-prey
oscillations such as reducing the prey’s carrying capacity or
increasing the predators death rate can combat this. In particular,
indiscriminate culling or harvesting of predators can help eradicate
a disease of the prey by stabilising the predator-prey oscillations.
This contradicts the ‘keeping the herds healthy’ hypothesis in
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Fig. 4. Disease in both predator and prey: State space diagrams of (a) a disease that does not become endemic in the prey (likewise predator) despite Rj > 1 (Rj = 1.26) and
(b) a disease that becomes endemic in the prey (likewise predator) despite R§ < 1 (R = 0.8055). For model details/equations, see Appendix B. Parameter values: (a) =3,
a=0.1and p=1 and (b) f=1.4, a=50 and p = 10. Other parameters: K=x=c=1and A=B=0.3.
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Packer et al. (2003), where the predator removal is suggested to
result in more infections in the prey.

The effect of shifting the threshold for the establishment of
disease described in this paper is only due to the difference in the
time-averaged host density. Hence, assumptions about the dis-
ease (e.g. increased mortality, reduced fertility, vertical transmis-
sion or host manipulation) should not change this. Consequently,
the difference between R§ and Ry is largely independent of model
assumptions. In fact, the phenomenon reported here does not
depend on the predator-prey dynamics itself, but on the fact that
the host is oscillating at a different time-averaged density when
compared to the equivalent equilibrium density.

One important assumption made in the diseased prey model is
that susceptible and infected prey are equally good intra-specific
competitors. However, this assumption is likely to be unrealistic
in many cases. In the Extensions, using different strengths of
density dependence for susceptibles and infecteds, we demon-
strate that although the relationship between time-averaged host
density and the time-averaged basic reproductive number is no
longer linear, they still monotonically increase with each other.
This suggests that density dependence does not alter the rule that
higher time-averaged densities have higher values of Ry.

There is one curious result in the case where infected indivi-
duals experience significantly less density dependence than
susceptibles (c < 1); in this case, the disease can increase host
density. Here, the reduction in density dependent mortality more
than offsets the additional disease-induced mortality, giving a
total reduction in host mortality. In particular, this means that
infection will result in increasing the carrying capacity of the host
population beyond that of a disease-free host population (the per
capita growth rate (r—puiy) still decreases with prevalence). This
scenario of a disease increasing rather than decreasing the host
carrying capacity challenges the typically detrimental impact
associated with diseases. We have not searched for any empirical
evidence for this theoretical prediction, but we believe this could
be an interesting over-looked indirect effect of infectious diseases.

However, there is one crucial assumption throughout this paper;
namely density dependent disease transmission. For a frequency
dependent disease, the basic reproductive number would be inde-
pendent of host density, whether time-averaged or otherwise. If we
put together frequency dependent transmission and infected indivi-
duals experiencing greater density dependent mortality, we get that
the basic reproductive number Ry is a monotonically decreasing
function of host density. This means that the disease is endemic if
the host population is below some threshold density. This is contrary
to typical epidemiological models where a disease is endemic when
above some threshold density.

Frequency dependent transmission and density dependent
mortality are common in epidemiological and ecological systems,
respectively. Hence, it seems reasonable that a maximum viable
host density should exist in some wildlife diseases. In these cases,
attempts to eradicate a disease by reducing the (time-averaged)
host density (e.g. by indiscriminate culling) could actually help
keep a disease endemic. A more general discussion of this effect is
in preparation.

The diseased predator model also exhibits bistability and saddle-
node bifurcations (Bate and Hilker, in preparation; Hurtado et al., in
preparation), which further undermine the use of basic reproduc-
tive numbers in determining the long term dynamics of an eco-
epidemiological system.

In summary, density dependent diseases can only become ende-
mic in an oscillating predator-prey system if the time-averaged
density of the disease free oscillation is large enough. The time-
averaged density is different from the equilibrium-based density that
the disease-free oscillations cycle around. This means endemicity
cannot be determined by the equilibrium-based basic reproductive

number. These results can have major consequences on disease
management and conservation in oscillating populations.
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Appendix A. Model formulation and calculation of R,

For all models, the equilibrium-based basic reproductive
number R can be found from Ry by setting the time-averaged
densities (N or P) as the equilibrium value (since the time-
average of something at equilibrium is the equilibrium). The
converse is generally not true; for example (P?)* —=P** but gen-
erally P? # (P)2. This example is equivalent to the variance of one
data point against (infinitely) many data points, where variance is
zero in the former, but variance is non-zero in the latter unless P
is constant.

A.1. Diseased predator

Incorporating the assumptions in the main text for a disease in
the predators, we get

dN NGS+1)

gp =NA-N)- hiN (A1)
dS NS+

&= hiN —mS—pSI, (A2)
% = BSI—(m+ )l (A3)

From an eco-epidemiological point of view, one key question is
what a disease does to the host population. This is not entirely
clear when the host is split into two different classes. Hence, we
will gather all predators, whether susceptible or infected, into one
class. This is done by replacing the equation for dS/dt with
dP/dt = d(S+1)/dt. Consequently, we have

dP NP
dt — h+N

From this, we establish that the disease only adds an addition
mortality term to the host population. On top of this, by replacing
infected predators with disease prevalence, we get the diseased
predator equations (3)—(5) in the main text.

Along the predator-prey limit cycle, if we integrate over the
period T of the limit cycle, then the cycle is back where it
has started. The same is true if we take the ‘per-capita’ of the
limit cycle. This means that both fOT(l /P)(dP/dt)dt =0 and
fOT(l/N)(dN/dt)dt:O by the Fundamental Theorem of Calculus,
noting that (1/P)(dP/dt) = d(In P)/dt. Armed with this information
we get

—mP—ul. (A4)

1 7 _
Tfo BP dt _ pP
u+m

Ro = , A5
o aim (A.5)
which can be derived from

1 /T1dl 1 [TddnI)
T(,Tadf:T/o ar 9=0

where [ is negligibly small.

There is an equivalent formulation of Ry from the prevalence
equation (5) which can be found by substituting (1/T) fOT(l /P)
(dP/dt) dt = 0 into the denominator of the above Ry. However, this
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formulation is a more complicated formulation of Ry and there-
fore has been omitted.

A.2. Diseased prey

Following the modelling assumptions in the main text for a
disease in the prey, we get

ds Sp

aT= rS+hQ —5)—m—.351v (A6)
di P

@t = Py WS+ (A7)
dP  (S+I)P

& = hrsen P *2

Recall that there is no vertical transmission, i.e. infected
individuals reproduce into the S-class with the same per-capita
birth rate r as susceptible individuals. Moreover, both susceptible
and infected individuals experience density-dependent mortality
(described by the parameter r since the carrying capacity has
been scaled to one) and mortality due to predation, but no
density-independent mortality.

Like the diseased predator model, it is more convenient to
work with N instead of S. Consequently, we have

dN NP

i :rN(]—N)—m—uI. (A9)

Again, by replacing infected prey with disease prevalence, we get
the diseased prey equations (6)-(8) in the main text.

Just like for the diseased predator results, we integrate over
the period T of the limit cycle for the ‘per capita’ of the limit cycle.
Using { fo 1t dt =1 o 45" dt=0,

where I is negligibly small, we get that

1.1 _

T Tfo PN dt B BN
n 1. 1( P o P -
H+7Jo <h+—N+rN> dt pu+ (m) +rN

By using r=(P/(h+N))+rN (from (1/T) fOT(l/N)(dN/dt) dt=0,
where I (iy) is negligibly small), Ry can be greatly simplified to

(A.10)

1.
Tl ANdC_ g

u+r T putr’ A1D)

This formulation demonstrates that Ry is in fact linear with N,
something that could not be seen from the original formulation of
Ro. It is also the formulation of Ry that can be found directly from
the prevalence equation (7) found in the main text.

A.3. Density dependent mortality

Here, we will allow infected prey to be weaker (or stronger)
intra-specific competitors than susceptible prey, and see the
effect this has on Ry and its relationship with N.

Starting with the diseased prey model, suppose that infected
experience density dependence differently to susceptibles. Doing
so, we have that the infected population follows:

dl P

= = BIN=DI—rcNI—pl— ——

dt — h+N’ (A12)

where rc is reflects the density dependence infected suffer. The
corresponding N,iy,P equations are given in Section 4 of the main
text (9)-(11).

Working with the infected population equation (or its loga-
rithm), and assuming that I is negligibly small, we get

1 1
o = fo PN dt N
Ro=— TT 5 - Tﬁ —. (A13)
1+ Jo haNTTENAE e <h+—N> +1cN

This in itself is not enlightening. However, by substituting

/7 ‘];)T(l/N)(dN/dt) dt =0, where I (iy) is negligibly small or by

using the prevalence equation we get

_ %foT BN dt SN

Ro= 1 1 r T utr+rc—HN’
,u+r<1—ffo th)+rcffo Ndt HFrHTe=D

(A14)

Linking back to the original diseased prey model (when c=1),
we had that Ry is linear (with respect to N). This means that the
original Ry is the transition between the sublinear (c> 1) and
superlinear (c < 1) cases, which makes sense.

Appendix B. Disease in both predators and prey

The model is from Hadeler and Freedman (1989). It has
notable differences to the other models in this paper beyond just
being a disease infecting both predators and prey. Disease
transmission is interspecific only, where susceptible predators
become infected by feeding on infected prey, and susceptible prey
are infected by infected predators. However, the disease-free
dynamics are the same (up to rescaling) as the models considered
in this paper, and thus have the same type of oscillations.

Keeping the original notation from Hadeler and Freedman
(1989), we have

dxg _ Xo Xo

E_ax(l_f>_A+xo+px1y_ﬁX°y1' (B.1)
dyo B Xo+ pXq PX1

dr CB+Ay°+CA+x0+px1 " Atxg +pxq Yor (B2)
dﬁ—ﬁyx_%_p—x]y (B3)
dt ~ PO K T Ao+ pxy ‘
dy; _ B px1 (B.4)

dr 7CB+AY1+KA+xo+px1 Yo,

where x =xp+x; is the total prey density, xo is the susceptible
prey density and x; is the infected prey density. Likewise,
y=Yo+y; is the total predator density, yo is the susceptible
predator density and y; is the infected predator density. Many
of the parameters have abstract definitions chosen for analytical
simplicity; but some parameters do have important definitions.
For example, p is the vulnerability to predation of infected prey
relative to the susceptible prey (Hadeler and Freedman, 1989
stipulated that p > 1, a restriction we will ignore here), x is the
transmissibility from feeding on infected prey, f is the transmis-
sibility of the disease from infected predator to prey, K is the
carrying capacity of the prey, and B is the prey density at the
disease-free predator-prey equilibrium (when B < K).

In this model, oscillatory disease-free predator-prey dynamics
occurs when B< (K—A)/2. Likewise, the condition where the
(equilibrium-based) basic reproductive number R} =1 is

frc = cB ax*(A+x*)+pKy*: cB B+ p(K—B)
A+B PKx*y* A+B Bp(K-B) ’

(B.5)

where (x*,y*) is the disease-free (unstable) equilibrium.
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