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Abstract The presence of infectious diseases can dramatically change the dynam-
ics of ecological systems. By studying an SI-type disease in the predator population
of a Rosenzweig–MacArthur model, we find a wealth of complex dynamics that do
not exist in the absence of the disease. Numerical solutions indicate the existence of
saddle–node and subcritical Hopf bifurcations, turning points and branching in peri-
odic solutions, and a period-doubling cascade into chaos. This means that there are
regions of bistability, in which the disease can have both a stabilising and destabilis-
ing effect. We also find tristability, which involves an endemic torus (or limit cycle),
an endemic equilibrium and a disease-free limit cycle. The endemic torus seems to
disappear via a homoclinic orbit. Notably, some of these dynamics occur when the
basic reproduction number is less than one, and endemic situations would not be ex-
pected at all. The multistable regimes render the eco-epidemic system very sensitive
to perturbations and facilitate a number of regime shifts, some of which we find to be
irreversible.

Keywords Eco-epidemiology · Period-doubling · Chaos · Bistability · Tristability

1 Introduction

Complex dynamics like bistability, quasiperiodicity and chaos have been found in
isolation in many ecological, epidemiological and eco-epidemiological models. Such
complex dynamics mean that small changes to parameters or initial conditions can
have large effects on the biological system in the long term. In this paper, two
relatively simple eco-epidemiological models are investigated; both models are of
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Rosenzweig–MacArthur predator–prey type with an SI disease in the predator with
different forces of infection. Within these models, a multitude of different forms of
bistability are found, as well as a torus bifurcation, a period-doubling cascade into
chaos and even an example of tristability. This diversity of complex dynamics has
rarely been seen in one investigation.

Some of these complex dynamics have been discovered in ecology. For example,
May (1974) demonstrated that simple discrete-time single-species models can ex-
hibit chaos. However, in continuous-time models, three species are needed to produce
more complex dynamics than just equilibria and limit cycles (Seydel 1988). Gilpin
(1979) found the first example of chaos in a continuous-time ecological model while
investigating a one-predator–two-prey model, whereas Hastings and Powell (1991)
found chaos in a three-species food chain. Bistability is something that has long been
established in ecology. One famous example of bistability is the two-species Lotka–
Volterra competition model. Likewise, in epidemiology, there exist backward bifur-
cations with saddle–node bifurcations in several models creating bistability between
endemic and disease-free equilibria (van den Driessche and Watmough 2002).

Within the field of eco-epidemiology, there are a few studies that demonstrate
some of these complex dynamics. Hilker and Malchow (2006) found a “strange peri-
odic” attractor, which seems to be a toric transient that lasts for a substantial time
period. Sieber and Hilker (2011) go further than Hilker and Malchow (2006) by
demonstrating that chaos, bistability and attractor crises can also occur. The first
eco-epidemiological paper to show chaos is Upadhyay et al. (2008), using an ex-
isting model (Chattopadhyay and Bairagi 2001), presumably via a cascade of period-
doubling bifurcations. Stiefs et al. (2009) demonstrate that quasiperiodicity and chaos
exist in a generalised predator–prey model with an SIRS disease in the predator, al-
though the focus of the complex dynamics is on cases with saturating forces of infec-
tion. Siekmann et al. (2010) found bistability when adding a free-living virus stage
to models of a predator–prey system with disease in the prey. Kooi et al. (2011)
found period-doubling cascades into chaos, bistability and transcritical bifurcations
of limit cycles. However, the existence of chaos in this model is not surprising, since
the model is the same as the three-species Rosenzweig–MacArthur food chain model
that was found to be chaotic in Hastings and Powell (1991).

In this paper, we explore two relatively simple eco-epidemiological models and
demonstrate that a multitude of complex dynamics occurs. Such an array of complex
dynamics has rarely been seen before. In Sect. 2, the models are introduced and ex-
plained, whereas Sect. 3 is a discussion on the steady states of these models and their
stability. Together, these two sections give the background (the “basic” dynamics)
for the main results in Sect. 4. These main results include bistability of limit cycles,
turning points of limit cycles, a period-doubling cascade into chaos, tristability and a
stable torus and its homoclinic destruction. All these results are a consequence of the
disease since they do not occur in the disease-free predator–prey system.

2 The Models

We will introduce two similar models, one of which is the model in Hilker and
Schmitz (2008) and uses frequency dependent transmission. The other model is the
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diseased predator model in Bate and Hilker (2013), which is the analogue with den-
sity dependent transmission. We will start by describing their similarities before
working on each model individually.

For both models, prey density X grows logistically to a carrying capacity K in the
absence of predators. In the absence of prey, the predators die out exponentially. Pre-
dation is based on a Holling type II functional response and the predator’s numerical
response is proportional to total predation. Predators are infected by an SI disease,
i.e. infection is for life and there is no immunity. Susceptible and infected predators
are denoted by the densities S and I , respectively. All predators are born susceptible;
there is no vertical transmission from infected mother to offspring. Infected predators
suffer an additional disease-induced death rate, but otherwise behave in the same way
as susceptible predators.

Starting with a prey–susceptible predator–infected predator model formulation,
we will reformulate the models in terms of the total predator and prey populations and
the prevalence of the disease in the predator population, i.e. the fraction of predators
that are infected. This scaling is used to demonstrate the effect of the disease on the
predator in the predator–prey system, something that is not immediately clear when
the predator population is in two classes.

2.1 Density Dependent Transmission (DD Model)

Incorporating all these assumptions with a density dependent force of infection gives:

dX

dT
= bX

(
1 − X

K

)
− aX(S + I )

H + X
, (1)

dS

dT
= eaX(S + I )

H + X
− dS − σSI, (2)

dI

dT
= σSI − (d + α)I, (3)

where b is the per capita growth rate of the prey when rare, K the carrying capacity of
the prey, H the half-saturation population density, a the maximum predation rate per
predator per prey, e the biomass conversion constant, d the natural per capita death
rate of the predator, α the disease-induced per capita death rate of the predator and σ

the transmissibility coefficient.
Setting Y = S + I as the total predator density and i = I

Y
to be the prevalence, i.e.

the proportion of infected predators, we get:

dX

dT
= bX

(
1 − X

K

)
− aXY

H + X
, (4)

dY

dT
= eaXY

H + X
− dY − αY i, (5)

di

dT
= i

(
(σY − α)(1 − i) − eaX

H + X

)
. (6)



2062 A.M. Bate, F.M. Hilker

To reduce the number of parameters, we can rescale using X = NK , Y = eKP and
T = t

ea
to get:

dN

dt
= rN(1 − N) − NP

h + N
, (7)

dP

dt
= NP

h + N
− mP − μP i, (8)

di

dt
= i

(
(βP − μ)(1 − i) − N

h + N

)
, (9)

where r = b
ea

, h = H
K

, m = d
ea

, μ = α
ea

and β = σK
a

.

2.2 Frequency Dependent Transmission (FD Model)

Using the same argument, we arrive at the frequency dependent model, the same
model as that in Hilker and Schmitz (2008). The parameters are the same as in the
density dependent model except that the transmissibility carries a different unit and
its dimensionless analogue is rescaled to β = σ

ea
. This means that:

dX

dT
= bX

(
1 − X

K

)
− aX(S + I )

H + X
, (10)

dS

dT
= eaX(S + I )

H + X
− dS − σ

SI

S + I
, (11)

dI

dT
= σ

SI

S + I
− (d + α)I, (12)

becomes

dN

dt
= rN(1 − N) − NP

h + N
, (13)

dP

dt
= NP

h + N
− mP − μP i, (14)

di

dt
= i

(
(β − μ)(1 − i) − N

h + N

)
. (15)

Notice that (13)–(15) are almost identical to (7)–(9), the difference being that (9)
has a βP term whereas (15) has a β term.

3 Steady States and Stability

In this section, we will give a brief summary of the steady states and their stability.
For more details, see the Appendix.

For both models, we have the extinction steady state (0,0,0) and the prey-only
disease-free steady state (1,0,0). The former is always unstable, whereas the latter
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is stable when the natural mortality rate of the predators is too high (i.e. m > 1
h+1 ).

Additionally, the FD model has a disease-induced predator extinction steady state
(1,0, i∗), where i∗ = 1 − 1

(β−μ)(1+h)
. This occurs when the total mortality rate (nat-

ural plus disease-induced) of the predators is too high (i.e. m + μi∗ > 1
h+1 ). Notice

that this can never happen if m + μ < 1
h+1 .

There can be two other steady states; the disease-free predator–prey steady state
(N∗,P ∗,0) and the coexistent (predator–prey–disease) steady state (N∗,P ∗, i∗).
There is a transcritical bifurcation between these at R∗

0 = 1 (the equilibrium-based
basic reproductive number, Bate and Hilker 2013). For the FD model, the coexistent
steady state is always unique when it exists. However, for the DD model, there can be
up to two coexistent steady states. This opens up the possibility of saddle–node and
backward bifurcations of the coexistent steady states.

Finding all the steady states does not give the full story. The underlying predator–
prey system is the Rosenzweig–MacArthur model (1963), which is well known for
having oscillatory dynamics caused by a Hopf bifurcation. Hence, by continuity, os-
cillations should occur in the predator–prey–disease system. Given the existence of
stable oscillations, numerical results will be necessary. All bifurcation diagrams are
plotted in MATLAB, mostly using data from the continuation software XPPAUT or
multiple runs of “ode45” or “ode15s” in MATLAB. Equations in MATLAB are “log
transformed” to prevent numerical errors dominating dynamics around zero. MAT-
CONT is used for the two-parameter bifurcation diagram in Fig. 3(a).

4 Results

In this section, we will analyse and compare various complex dynamics that have
been found in both models when there exist stable predator–prey oscillations in the
absence of the disease (so parameters are chosen such that m < 1−h

1+h
). This analysis

is largely done by varying the disease transmissibility (β) and the disease-induced
death rate (μ). First, we will describe some general results that apply to either model.
Then we will focus on various forms of bistability that can be found in these models.
Furthermore, we will demonstrate that the DD model can exhibit tristability, a stable
torus and its destruction via a homoclinic bifurcation; whereas the FD model can
exhibit chaos via a period-doubling cascade. Lastly, we will describe various forms
of regime shifts and hysteresis.

4.1 General Results

Figures 1(a)–(d) are bifurcation diagrams with respect to transmissibility (β) for the
FD and DD models, respectively. When transmissibility is small, the disease can not
spread fast enough to survive in the long run and thus only disease-free predator–
prey oscillations are stable. As transmissibility increases, it will reach a threshold
value corresponding to R0 = 1, above which the disease will become endemic in
the predator–prey oscillations, giving coexistent oscillations (Fig. 1(d)). Increasing
transmissibility further results in the stabilisation of the coexistent oscillations via
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Fig. 1 Bifurcation diagrams of (a) the FD model and (b), (c), (d) the DD model, demonstrating the
progression (with increasing transmissibility) from disease-free oscillations to endemic oscillations to an
endemic equilibrium and, in (a) only, to disease-induced extinction of the predators. (a) and (b) show the
(maximum) prey density (N ) with respect to transmissibility (β), whereas (c) and (d) show maximum
predator density and maximum prevalence, respectively. The trivial steady states have been omitted as
well as the prey only steady state in (b). (b) is the same as Fig. 1 in Bate and Hilker (2013), whereas (a) is
comparable to Fig. 2(a) in Hilker and Schmitz (2008) (but with different parameter values). Parameter
values: (a) μ = 1, r = 1, h = 0.3 and m = 0.3 (FD model); (b), (c), (d) μ = 0.5, r = 2, h = 0.3, and
m = 0.3 (DD model)

a Hopf bifurcation, leading to a stable coexistent equilibrium. The reason for sta-
bilisation is that the total death rate of predators (m + μi∗) is now large enough
to prevent predator–prey oscillations. However, this depends on a sufficiently large
disease-induced death rate μ.

In addition to these common effects between the two models, there are aspects that
only exist in one of the models.

For the FD model, a disease-induced extinction of the predators can occur
when transmissibility (β) (and disease-induced death rate μ) are particularly large
(Fig. 1(a)). This is not possible in the DD model since the disease can not survive
when the density of predators becomes small, whereas the disease in the FD model
can persist at any predator density, provided transmissibility is sufficiently large.

For the DD model (Fig. 1(b)), there is a difference between the transcritical bifur-
cation in the (stable) predator–prey oscillations (R0 = 1) and the transcritical bifurca-
tion in the (unstable) predator–prey equilibrium (R∗

0 = 1). This means that the disease
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.

Fig. 2 Bistability between two limit cycles in the DD model. (a) demonstrates that bistability occurs for
values of β between the two turning points of limit cycles, whereas (b) zooms in on the turning points of
the limit cycles. There is also similar bistability in the FD model. In (b), the disease-free oscillations are
not shown and stable/unstable equilibria have been drawn in for clarity, with the dashed line representing
unstable equilibrium. μ = 0.53. Other parameters are the same as Fig. 1(b)

has a different endemic threshold in predator–prey oscillations than at equilibrium
(Fig. 1(d)). This difference in thresholds occurs because the time-averaged predator
density for predator–prey oscillations is smaller than the predator density for the (un-
stable) predator–prey equilibrium in Rosenzweig–MacArthur predator–prey models.
In the FD model, the thresholds at equilibrium and in oscillations are the same since
the thresholds are independent of predator density, i.e. R∗

0 = R0 = β
m+μ

. The differ-

ence between the thresholds R∗
0 = 1 and R0 = 1 has been explored in more detail in

Bate and Hilker (2013). As we will find out in the next subsection, this difference
can lead to an interesting form of bistability between the endemic equilibrium and
disease-free predator–prey oscillations in the DD model.

4.2 Various Forms of Bistability

In this subsection, we will demonstrate the birth of bistability via a cusp bifurcation
of limit cycles and a generalised Hopf bifurcation in both the DD and FD models. We
then discuss various forms of bistability, including bistability between endemic and
disease-free states in the DD model.

Figure 2(a) is a bifurcation diagram with respect to transmissibility (β) for the
DD model, like Fig. 1(b), but with a slightly increased disease-induced death rate
(μ = 0.53 instead of μ = 0.5 in Fig. 1(b)). Both figures are quite similar with respect
to the overall pattern from low to high transmissibility (β) of disease-free oscilla-
tions to coexistent oscillations to coexistent equilibria. There is, however, one major
difference; namely, there are two turning points of limit cycles in the coexistent os-
cillations branch. Zooming in around the turning points makes this difference much
clearer (Fig. 2(b)). Due to these two turning points of limit cycles, there are parameter
regions with three coexistent limit cycles; the inner and outer limit cycles are stable
(black circles in Fig. 2(b)), whereas the middle limit cycle (the one that joins the two
turning points of limit cycles) is unstable (white circles in Fig. 2(b)). Thus there is
bistability between two different limit cycles.
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Fig. 3 The birth of bistability: (a) is a two-parameter bifurcation diagram with varying transmissibility
(β) and disease-induced death rate (μ). This demonstrates that the bistability in Fig. 2 is the result of a
cusp bifurcation of turning points of limit cycles between Fig. 1(b) and Fig. 2 (marked ‘CPC’ for Cusp
Point of Cycles). Further increases of μ lead to bistability between an equilibrium and a limit cycle (once
beyond the generalised Hopf bifurcation, marked “GH”). For (a), the thick dashed lines represent the
turning points of limit cycles, the bold line represents the Hopf bifurcation, and the grey dashed horizontal
line highlights where Fig. 2 fits in. (b) is a sequence of sketched bifurcation diagrams with respect to
transmissibility (β) for increasing disease-induced death rate (μ). For (b), large black circles stand for
stable (endemic) oscillations, and small black circles stand for unstable (endemic) oscillations. Starting
with a stable limit cycle (i) (μ = 0.5, see Fig. 1(b)), the system progresses to the limit cycle beginning to
“bow” (ii) (μ = 0.52); to an inflection point in the limit cycle (cusp point) (iii) (μ ≈ 0.5235); to two stable
limit cycles and one unstable limit cycle (iv) (μ = 0.53, see Fig. 2); to a generalised Hopf bifurcation (v)
(μ ≈ 0.55); to a subcritical Hopf bifurcation with one stable and one unstable endemic cycle (vi) (μ = 0.6).
A similar progression occurs in the FD model: μ = 1 (see Fig. 1(a)) (i), μ = 2.4 (ii), μ ≈ 2.47 (iii),
μ = 3 (iv), μ ≈ 3.35 (v) and μ = 3.5 (vi). Other parameters. DD model: same as Fig. 1(b). FD model:
same as Fig. 1(a)

Figure 3 demonstrates how two turning points of limit cycles can arise, as well
as how this can lead to a subcritical Hopf bifurcation. We start the sequence in
Fig. 3(b)(i) (bottom of Fig. 3(a)) with a solitary (coexistent) limit cycle just like in
Fig. 1. Increasing μ results in the limit cycle branch being bowed in the middle much
like a reverse “

∫
” (Fig. 3(b)(ii)). Instantaneously, this bowing results in an inflection

point, also called a cusp point or bifurcation of the limit cycle (Fig. 3(b)(iii)). This is
shown by the “CPC” in Fig. 3(a). Beyond this inflection point, there are two turning
points (i.e. two saddle–nodes bifurcations) of limit cycles (Fig. 3(b)(iv)). In between
these, there are three limit cycles; one stable limit cycle with small amplitude oscilla-
tions, one stable limit cycle with large amplitude oscillations and one unstable limit
cycle that is between the other two. Thus, there is bistability between two different
limit cycles, one with large amplitude and one with small amplitude.

Further increasing μ results in the two turning points spreading apart, and at some
point the top/outer limit cycle goes beyond the Hopf bifurcation (when one of the
dashed lines moves to the right of the bold Hopf line in Fig. 3(a)). From this point on,
there is some parameter region where there is bistability between the large-amplitude
limit cycle and the coexistent steady state. Increasing μ further moves the inner turn-
ing point closer to the Hopf bifurcation until they collide resulting in a generalised
Hopf bifurcation (Fig. 3(b)(v)). This generalised Hopf bifurcation is marked “GH” in
Fig. 3(a). Increasing μ beyond this, there is a subcritical Hopf bifurcation and only
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Fig. 4 Tristability and torus bifurcations in the DD model: Bifurcation diagrams of (a) maximum prey
density (N ) and (b) maximum prevalence, with respect to transmissibility (β) focused around the Hopf
and saddle–node bifurcations. The grey region highlights a region of tristability between disease-free
predator–prey oscillations, a coexistent equilibrium and coexistent limit cycle or torus. In this figure, both
R∗

0 < 1 and R0 < 1, yet there are two endemic states in the grey region. Parameter values: μ = 2, r = 0.5,
h = 0.1 and m = 0.2. The disease-free predator–prey equilibrium is omitted; it is a horizontal line near the
horizontal-axis (N = 0.025). The parameter region where the disease invades the predator–prey oscillation
has been omitted

one turning point (Fig. 3(b)(vi)). In this case, there is bistability only between the
outer coexistent limit cycle and the coexistent equilibrium.

This bifurcation sequence occurs in both the DD and FD models (see caption of
Fig. 3). Consequently, both models can exhibit bistability between either two coexis-
tent oscillations (one with large-amplitude and one with small-amplitude) or between
a coexistent oscillation and a coexistent equilibrium. There is another form of bista-
bility that, to the authors’ knowledge, can only occur in the DD model: bistability
between the coexistent equilibrium (or small-amplitude coexistent oscillations) and
disease-free oscillations. This occurs when the Hopf bifurcation is to the left of the
transcritical bifurcation of limit cycles at R0 = 1 (Fig. 4 is an example of this kind
of bistability). Bistability in the DD model between coexistent equilibria and either
coexistent or disease-free oscillations model has also been found in Hurtado et al.
(2013), although they dismiss such bistability occurring in the FD model.

4.3 Torus Bifurcations and Tristability

Figure 4 illustrates many phenomena not shown previously in this paper:

1. There is a saddle–node bifurcation of the coexistent equilibrium.
2. There is bistability between disease-free oscillations and coexistent equilibria.

Normally, this bistability occurs when the Hopf bifurcation is to the left of the
transcritical bifurcation of limit cycles. However, if the Hopf bifurcation is on the
lower “saddle” branch of equilibria (like in Fig. 4) this bistability occurs when the
saddle–node bifurcation is to the left of the transcritical bifurcation of limit cycles.

3. The saddle–node and Hopf bifurcations have switched positions (previously, the
Hopf bifurcation was located on the upper “node” branch of equilibria, whereas
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Fig. 5 (a) Phase portrait illustrating tristability in the DD model and (b) a time profile of the coexistent
torus with respect to prey density (N ). Initial conditions are (0.05, 0.3, 0.01) (disease-free oscillations),
(0.5, 0.01, 0.01) (coexistent equilibrium) and (0.1, 0.2, 0.01) (coexistent torus). β = 27.4. Other parameters
are the same as Fig. 4

in Fig. 4, the Hopf bifurcation is located on the lower “saddle” branch of equi-
libria). This means that a fold–Hopf bifurcation (sometimes called a zero–Hopf
bifurcation) has occurred when the two bifurcations meet.

4. Along the unstable limit cycle arising from the Hopf bifurcation, a torus bifurca-
tion occurs, which stabilises the limit cycle until a turning point of limit cycles is
reached.

5. The stable torus created at the torus bifurcation is destroyed by a homoclinic bifur-
cation as the torus collides with the saddle limit cycle. Between the turning point
of limit cycles and the homoclinic destruction of the torus, there is a region of
tristability (the grey region of Fig. 4). Figure 5(a) demonstrates this tristability by
showing that three different attractors can be obtained just by changing the initial
condition, whereas Fig. 5(b) demonstrates that the toric attractor gives quasiperi-
odic dynamics.

The cause of the tristability seems to be the combination of (i) the Hopf bifur-
cation colliding with the saddle–node bifurcation, creating a fold–Hopf bifurcation,
and (ii) a generalised Hopf bifurcation leading to the creation of a turning point of
limit cycles near the Hopf bifurcation (like in Fig. 3) occurring soon after the fold–
Hopf bifurcation. By varying the diseased-induced death rate, μ, and assuming all
other parameters are the same as Fig. 4, tristability occurs for values of μ beyond the
fold–Hopf bifurcation (μ ≈ 0.95) and the generalised Hopf bifurcation (μ ≈ 0.97),
i.e. tristability occurs for μ � 0.97.

The torus that appears at the (supercritical) torus bifurcation grows until it col-
lides with another invariant set. In Fig. 4 (μ = 2), the torus breaks down as it seems
to collide with the saddle limit cycle to form a homoclinic orbit. (This is clearer in
Fig. 4(b) since in Fig. 4(a), the torus looks like it is close to the unstable equilibrium at
the homoclinic bifurcation, which is not the case). Figures 6(a) and (b) are Poincaré
sections before and after this homoclinic bifurcation, respectively, showing the ho-
moclinic destruction of the torus. Figure 6(a) shows a closed loop in the Poincaré
section, consistent with quasiperiodic dynamics on a stable torus, whereas Fig. 6(b)
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Fig. 6 Poincaré sections demonstrating the destruction of the torus in Fig. 4 in the DD model: (a) just
before the homoclinic destruction of the torus (β = 27.54513), (b) just after the homoclinic destruction
of the torus (β = 27.54514). Notice the curve in the Poincaré section (torus) is sparser in (b) since the
system follows the cycle several times in a transient phase before going to the predator–prey oscillations.
The Poincaré section is of trajectories hitting the N = 0.12 plane from above. (c) is a sketch of the creation
and destruction of the homoclinic orbit in the Poincaré section, where the white circles represent unstable
(or saddle) limit cycles, thick lines represent the stable torus, and the thin lines with arrows represent either
the trajectories, or the stable/unstable manifolds of the saddle-limit cycle. Other parameters are the same
as Fig. 4

shows a loop in the Poincaré section that is broken after many iterations, consistent
with a long quasiperiodic transient. Figure 6(c) is a sketch of the mechanism behind
the homoclinic destruction of the torus. The saddle limit cycle (seen as a saddle point
in the Poincaré section) and stable torus (seen as a stable limit cycle in the Poincaré
section) approach each other (top left of Fig. 6(c)). Instantaneously, the stable torus
and saddle limit cycle collide to form a homoclinic orbit in the Poincaré section (top
right of Fig. 6(c)). Beyond this, although there are quasiperiodic transients, the sta-
ble torus no longer exists, leaving just the saddle limit cycle and unstable limit cycle
(bottom middle of Fig. 6(c)). In the case of Fig. 4, after the homoclinic destruction
of the torus, trajectories near the original torus seem to eventually converge to the
disease-free predator–prey oscillations, after some quasiperiodic transient.

The existence of a stable torus should not be too much of a surprise. In fact,
Kuznetsov (1995, p. 300) states that fold–Hopf bifurcations, the interaction between
fold (i.e. saddle–node) and Hopf bifurcations, can lead to tori. In the FD model, how-
ever, torus bifurcations and tristability have not been found. The reason is that there is
no “fold” in the FD model. Likewise, there is no saddle–node bifurcation to provide
a second equilibrium branch which may lead to another set of stable dynamics. Con-
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Fig. 7 Period-doubling in the FD model: (a) Bifurcation diagram with respect to β where μ = 12. Three
period-doubling bifurcations have occurred, although this is not clear as all branches are very close to each
other. To confirm the existence of three period doubling bifurcations, (b) shows a phase portrait of the
resulting 8-cycle at β = 12.62 (= μ + 0.62). Other parameters are the same as Fig. 1(a)

sequently, the frequency dependent model probably does not have either tristability
or invariant tori, although we can not exclude these phenomena.

It is worth noting that in this scenario, “living on the torus” can be a reasonably
good scenario for the disease, predator and prey. For β = 27.4, the minimum val-
ues are N ≈ exp(−3.5), P ≈ exp(−4) and i ≈ exp(−11), whereas near the homo-
clinic orbit at β = 27.54513 (Fig. 6(a)) the lows are N ≈ exp(−5), P ≈ exp(−6)

and i ≈ exp(−25). For example, if β increases from a region with a stable torus
to a region where it has broken down, trajectories near the previously stable torus
will now eventually approach (after some quasiperiodic transient) the disease free
predator–prey oscillations. These oscillations have much more severe lows for both
predator and prey (approximately exp(−19) and exp(−43), respectively) which in
reality could lead to stochastic extinction of the predator and/or prey.

At μ = 1 (with other parameters the same as Fig. 4), there is a similar torus/limit
cycle tristability (since μ � 0.97). However, the parameter region is very small,
which also makes it more difficult to numerically investigate how the torus disap-
pears. In this case, the lows of each variable are not as severe as the case of μ = 2
(Fig. 4). The authors suspect that this breakdown is either the result of the same
homoclinic orbit at the saddle limit cycle or the “hole” of the torus shrinks to noth-
ing, colliding with the unstable (saddle point) steady state it surrounds. Following
the breakdown of this torus for μ = 1, after some quasiperiodic transient, the sys-
tem seems to settle down at the endemic equilibrium, which is different to the μ = 2
(Fig. 4) case where the disease-free oscillations are approached.

4.4 Period-Doubling and Chaos

In the FD model, increasing the disease-induced death rate (μ), period-doubling bi-
furcations begin to arise. By the time μ = 12, three period-doubling bifurcations have
occurred (Fig. 7(a)), resulting in the existence of an “8-cycle” (Fig. 7(b)). Figure 8
demonstrates that these period-doubling bifurcations form part of a period-doubling
cascade, which results in chaotic dynamics soon after μ = 12.
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Fig. 8 Period-doubling cascade
into chaos in the FD model.
Bifurcation diagram of (local)
maximum prevalence with
respect to μ, where β varies
with μ along the line
β = μ + 0.62. Other parameters
are the same as Figs. 1(a) and 7.
The initial condition
(N,P, i) = (1,0.1,0.01) was
used

We also have a region of bistability in Fig. 7(a), between coexistent limit cycles
(including 2-cycles) and coexistent equilibria. This leads to the possibility of bistabil-
ity between coexistent chaos and coexistent equilibria/small-amplitude limit cycles.

In the DD model, period-doubling bifurcations have not been found. However, we
suspect that period-doubling bifurcations and the cascading into chaos phenomenon
might exist in the DD model. Additionally, since bistability seems to be at least as
common in the DD model, compared with the FD model, bistability between coexis-
tent chaos and coexistent equilibria/small-amplitude limit cycles might also exist in
the DD model.

4.5 Regime Shifts and Hystereses

There is one distinct phenomenon common to Figs. 2, 3, 4, 7; the possibility of regime
shifts and hystereses. Regime shifts are large, abrupt, persistent changes in the struc-
ture and function of a system (Biggs et al. 2009). Here, we will restrict the defini-
tion of regime shifts to that of “critical transitions” from Scheffer (2009); the drastic
change toward another state caused by minor perturbations and/or a gradual change
in the system (i.e. parameters), This definition ignores drastic changes caused by
large and sudden changes to the system. Using this definition, a regime shift occurs
when there is a discontinuity (jump) in stable attractors when varying a particular
parameter. Here, there are many different regime shifts because of the existence of
saddle–node bifurcations, turning points of limit cycles, bistability, tristability and
the homoclinic destruction of a stable torus. We will separate regime shifts into two
different classes; (globally) reversible and (globally) irreversible.

A (globally) reversible regime shift is a regime shift such that there is a (possi-
bly complex) sequence of small alterations in the bifurcation parameter that will lead
back to the starting point, via a hysteresis loop. Notice that we mention globally,
since we are describing recovering to the original state via some potentially long and
complicated path and not by a small, local change. An example of a reversible regime
is in Fig. 7; starting just to the left of the turning point of the coexistent oscillations,
slowly increasing transmissibility beyond the turning point will mean that the system
will eventually approach the coexistent equilibrium after some oscillatory transient.
Now that we “sit” on the endemic equilibrium, reducing transmissibility slowly will
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not deviate from the equilibrium until the Hopf bifurcation is passed, far below the
original transmissibility. Below the Hopf bifurcation, the system will slowly approach
the endemic oscillations (possibly a 2-cycle). Once there, slowly increasing the trans-
missibility will move the system toward the original state near the turning point on
the endemic oscillations.

A (globally) irreversible regime shift is a regime shift where there is no such se-
quence of small alterations to get back to the starting point, i.e. there is no hysteresis
loop. This means that once the system has moved away from the starting point, it
can never return without a dramatically large perturbation away from another sta-
ble state. For example, in Fig. 4, there seems to be no plausible way of approaching
the endemic limit cycle/torus via either stable oscillations or equilibria. This means
when starting on the stable coexistent limit cycle/torus, slowly decreasing transmis-
sibility below the turning point of coexistent oscillation or increasing transmissibility
beyond the homoclinic destruction of the torus would lead to the end of coexistent
limit cycle/torus forever.

5 Discussion

In this paper, we explored two relatively simple eco-epidemiological models and
found an unusually large variety of complex dynamics. The variety of complex dy-
namics found in these models, which is summarised in Table 1, is much broader than
in previous studies in eco-epidemiology and most studies in ecology and epidemiol-
ogy.

We found that the Hopf bifurcation between the coexistent steady state and the co-
existent periodic orbit can become subcritical, via a cusp bifurcation of limit cycles.
Consequently, bistability between coexistent oscillations and coexistent equilibria or
between two different coexistent oscillations can occur in both the DD and FD mod-
els. Combining this with the fact that there is a difference between R∗

0 and R0 in
the DD model (see Bate and Hilker 2013, for more details) there are also scenarios
where there is bistability between a coexistent equilibrium and disease-free predator–
prey oscillations. In these scenarios, it is the initial condition that determines whether
the disease can become endemic to a stable equilibrium or not. In particular, if the
saddle–node bifurcation is biologically realistic, there are scenarios where the disease
is endemic (at equilibrium, oscillation or torus, Fig. 4) despite both R∗

0 and R0 being
less than one. This is reminiscent of a backward bifurcation, a phenomenon found in
a few epidemiological models like some in van den Driessche and Watmough (2002).

In the previous paragraph, we concluded that that the disease can persist despite
both R∗

0 and R0 being less than one. However, we can say more; Fig. 4 demonstrates
that there can be two stable coexistent states despite both R∗

0 and R0 being less than
one. This goes beyond the usual backward bifurcation since Fig. 4 demonstrates that
the disease can persist in two stable states, one stable state is an equilibrium whereas
the other is (quasi-)oscillatory, despite both R∗

0 and R0 being less than one.
We demonstrated that period-doubling exists in the FD model. In fact, we have

shown that period-doubling bifurcations can cascade into chaos. We have not found
period-doubling in the DD model, however, the authors believe that period-doubling
bifurcations (and the cascade into chaos) might occur.
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Table 1 Summary of complex dynamics found in the DD and FD models

FD model DD model

Disease stabilisation ✓ (Hilker and Schmitz 2008) ✓ (Figs. 1(b)–(d))

Different endemic thresholds ✗, R∗
0 = R0 (Bate and Hilker 2013) ✓, R∗

0 > R0 (Bate and
Hilker 2013)

S–N bifurcation of Eq ✗ (the Appendix) ✓ (Fig. 4)

S–N bifurcation of LC (turning points) ✓ (Figs. 2, 3) ✓ (Figs. 2, 3)

Subcritical Hopf ✓ (Figs. 3, 7(a)) ✓ (Fig. 3)

Cusp bifurcation of LC ✓ (Fig. 3) ✓ (Fig. 3)

Bistability . . . ✓ ✓

. . . between Co LC and Co Eq ✓ (Figs. 3, 7(a)) ✓ (Fig. 3)

. . . between 2 Co LC ✓ (Figs. 2, 3) ✓ (Figs. 2, 3)

. . . between DF LC and Co Eq/LC ✗ ✓ (Fig. 4)

. . . between Co Chaos and Co Eq/LC ✓? (Fig. 7) ✓?

Torus bifurcation ✗? ✓ (Fig. 4)

Homoclinic bifurcation ✗? ✓, destruction of torus
(Figs. 4, 6)

Tristability ✗? ✓, between DF LC, Co
Eq and Co LC/Torus
(Figs. 4, 5)

Period doubling bifurcation ✓, cascades into chaos, (Figs. 7, 8) ✓?

Regime Shifts and hysteresis ✓, reversible found only ✓, reversible and
irreversible

“✓” means found, “✗” means can not occur in this model, “✓?” means that not found in this paper but
we suspect can occur in this model and “✗?” means that we do not believe this can occur but have not
completely discounted it. “Co”: Coexistent, “DF”: Disease-free, “Eq”: Equilibria, “LC”: Limit cycles,
“S–N”: Saddle–Node

One result in this paper is the existence of hystereses and regime shifts. With all
the bistability, tristability and homoclinic orbits, there are many examples of regime
shifts. Most of these regime shifts can be reversed via some long and complex se-
quence of small changes in parameter value. It is worth noting that such sequences
may be impractical, not feasible, or downright impossible in reality. However, some
regime shifts can not be reversed. In particular, we found that the stable coexistent
torus/oscillations in Figs. 4, 5, 6 are not recoverable when lost without large pertur-
bations.

One aspect that is novel in this paper is the scenario of tristability. Tristability
seems particularly rare in ecological and epidemiological models. The authors are
not aware of any previous examples of tristability in eco-epidemiological papers,
with only a few works finding bistability (Siekmann et al. 2010; Kooi et al. 2011;
Sieber and Hilker 2011). In fact, the most examples the authors have found of trista-
bility in ecology or epidemiology typically involve one or more Allee effects. For
example, Hilker et al. (2009) found tristability when adding disease to a popula-
tion with an Allee effect, whereas González-Olivares and Rojas-Palma (2011) found
tristability when combining a predator–prey interaction with a Holling type III func-
tional response and an Allee effect in the prey. Likewise, Berezovskaya et al. (2010)
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found tristability when considering a predator–prey interaction with linear functional
response, prey refuge and an Allee effect in the prey. Tristability in these models is
not particularly surprising; Allee effects usually imply bistability, so tristability only
requires the creation of one unexpected stable equilibrium or limit cycle. An example
of tristability that does not involve Allee effects is found in Beardmore and White
(2001); here there is an infectious disease in a population with complex social group
structure. All these papers have one aspect in common, the tristability is between
several equilibria (Beardmore and White 2001; Hilker et al. 2009) or two equilib-
ria and an oscillation (Hilker et al. 2009; González-Olivares and Rojas-Palma 2011;
Berezovskaya et al. 2010), with one or more of the equilibria being (semi-)trivial. In
this paper, the tristability is between a disease-free (semi-trivial) oscillation and two
coexistent states, one equilibrium and one (quasi-)oscillatory. However, both coex-
istent states, as previously mentioned, are not expected to exist from the usual “R0
argument” as both R∗

0 < 1 and R0 < 1. On top of this, the coexistent torus/limit cycle
in Fig. 6 can not be found by the usual steady state and stability analysis.

We can confirm that a disease with density dependent transmission can have the
same stabilising affect as the disease with frequency dependent transmission has on
a predator found in Hilker and Schmitz (2008), taking predator–prey oscillations to
endemic equilibrium. The reason why this occurs is that the disease increases total
host mortality (from mP to (m + μi)P ), which will dampen the boom and bust of
Rosenzweig–MacArthur predator–prey dynamics. Also, we have demonstrated that
disease in the predators can greatly influence not only predator (host) density, but also
interacting species like the prey.

The models used in this paper are relatively simple for eco-epidemiological mod-
els as the disease only increases host mortality. This means infection does not change
how effective the predator is at searching, handling and eating prey as well as re-
production. This point is particularly clear in the predator–prey-prevalence equa-
tions (7)–(9) and (13)–(15), where the disease has no direct influence on total prey
density and only influences the predator population via additional mortality. Like-
wise, the disease is only an SI disease, with no recovery, latency or immunity. Also,
the models use the standard frequency dependent and density dependent forces of
infection.

These two forces of infection are the two default choices when modelling disease
transmission, largely because they are relatively simple and can be mechanistically
derived using assumptions based on contact rates. However, in wildlife diseases, there
have been mixed results to whether these forces of infections are realistic (McCallum
et al. 2001; Ferrari et al. 2011). Despite this, they are still seen as the benchmarks of
which all other forces of infection are compared (Begon et al. 2002).

The summary of results in Table 1 shows that density dependent and frequency
dependent transmission can yield distinctly different dynamics. Note that tristabil-
ity and different endemic thresholds between limit cycles and equilibrium are not
possible with frequency dependent transmission. On top of this, there are relatively
small regions of coexistence between predator and disease in the frequency depen-
dent transmission if the disease-induced mortality (μ) is large. If more complex,
non-linear forces of infection were used, one would expect some of the complex dy-
namics found in these models (especially the density dependent model, since many
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non-linear forces of infection like those based on power laws or saturating contact
rates can be simplified to a density dependent force of infection via parameter or
limit assumptions) as well as other complex phenomena. In particular, the endemic
thresholds R∗

0 and R0 would be different for most forces of infection, with frequency
dependent transmission being the main exception. This means that, unlike frequency
dependent transmission, most forces of infection could have bistability between en-
demic and disease-free states. However, both models have bistability and both are
suspected to have chaos following a period-doubling cascade, which suggests that
such phenomena also exist for a wide range of forces of infection.

There is a caveat to some of these results in this paper, one that is common with
many models that exhibit chaos and complex dynamics; dangerously small popula-
tion sizes (Berryman and Millstein 1989; Thomas et al. 1980). Some of the interesting
dynamics occur in scenarios of major boom and bust, cases that are likely to cause
stochastic extinctions (this problem depends on the predator/prey rescaling; in par-
ticular, it depends on the carrying capacity of the prey in the original model, K). In
particular, looking at the phase space plots illustrating tristability in Fig. 5, we can see
that the predator–prey oscillations (and to a lesser extent the coexistent torus) get very
close to the origin. Although various simulations were investigated, the search was
not exhaustive and there may be parameter values that do not result in dramatic boom
and bust, but still contain similar complex dynamics. For example, the torus at μ = 1
(other parameters are the same as in Fig. 4) suffers less from the dangerously low
populations than the example in Figs. 4, 5, 6 where μ = 2. In particular, we only in-
vestigated scenarios where disease-free predator–prey oscillations exist. There could
be scenarios where complex dynamics like oscillatory dynamics, bi/tristability and
chaos occur when, in the absence of the disease, only stable equilibria exist; but we
stress that this has not been investigated in this paper.

The existence of a torus bifurcation (sometimes called a Neimark–Sacker bifurca-
tion) poses many unanswered questions. We have demonstrated one case where the
torus seems to be broken by a homoclinic orbit of a saddle–cycle. However, there are
many other ways how a torus can bifurcate or disappear. For example, the torus could
experience period doubling bifurcations into chaos or there could be phase locking
into a periodic orbit. The analysis in this paper is restricted to just one set of param-
eter values, largely because of the interesting case of tristability. This means there is
much more to explore in relation to the stable torus than is found this paper.

The results in the FD model are directly comparable with Hilker and Schmitz
(2008). Figure 1 uses parameter values not too dissimilar to those in Hilker and
Schmitz (2008). As we make the disease dynamics “faster” (i.e. higher disease-
induced death rate μ with higher transmissibility β), the system becomes more com-
plex as bistability and period doubling cascades arise. However, increasing μ gives
smaller ranges of β where coexistence can occur (complex or not). This makes it
less likely for coexistence to occur for high μ, a point that can be seen in Hilker and
Schmitz (2008, Fig. 4). In the DD model, we suspect a similar pattern for fast dis-
ease dynamics. However, there is no upper limit in transmissibility (β) for endemic
coexistence since there is no disease-induced extinction of the predator in the DD
model.

In the absence of the disease, the predator–prey interaction can only lead to two
types of stable dynamics; stable equilibria and stable oscillations. This means that the
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bistability, tristability, period-doubling into chaos, stable tori and homoclinic orbits
(and much more, see Table 1) exist because of the interaction with the disease in the
predator. The regimes of multistability imply that the eco-epidemic system may be
extremely sensitive to perturbations (e.g. due to stochastic events, control actions like
culling or gradual trends in environmental conditions). This can trigger a number of
regime shifts, some of which we have identified to be irreversible. The regime shifts
may also be accompanied by long-lasting transients of former attractors.

In summary, we can conclude that diseases can greatly influence the dynamics of
the host population and other species interacting with the host. In other words, eco-
epidemiology can give profoundly different results than just the background ecology.
Similarly, predation can make disease dynamics more complicated.
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their constructive comments.

Appendix: Steady States of FD and DD Models

There are two key differences between the DD and FD model. One is the existence of
a disease-induced extinction of the predator in the FD model. The other is that there
can be only one coexistent steady state in the FD model as the corresponding value
of i∗ is known; whereas in the DD model, there can be one or two coexistent steady
states.

A.1 Trivial/Semi-trivial Steady States

– Both models: (0,0,0) which always exists and is always unstable.
– Both models: (1,0,0) which always exists and is stable if m > 1

1+h
, unstable oth-

erwise.
– Both models: (N∗,P ∗,0), where N∗ = hm

1−m
and P ∗ = r(h + N∗)(1 − N∗). This

exists when m < 1
1+h

(< 1). It is stable if N∗ > 1−h
2 (equivalently m > 1−h

1+h

(Hopf bifurcation)) and R∗
0 < 1, where R∗

0 equals βP ∗
m+μ

(DD model) and β
m+μ

(FD
model).

– FD model only: (1,0, i∗) where i∗ = 1 − 1
(β−μ)(1+h)

. This exists when β − μ >

1
1+h

and is stable if m + μi∗ > 1
1+h

, unstable otherwise.
– (FD model only: (0,0,1). This is always unstable.)
– (FD model only: (0,0, i∗). i∗ is unspecified. This only exists when β = μ, which

is not generally true. This is always unstable.)

A.2 Coexistent Steady State(s)

A.2.1 DD Model

The coexistent equilibria for the DD model are of the form (N∗,P ∗, i∗), where N∗ =
h(m+μi∗)

1−(m+μi∗) , P ∗ = r(h + N∗)(1 − N∗) and i∗ = 1 − N∗
h+N∗ 1

βP ∗−μ
= 1 − m+μi∗

βP ∗−μ
=
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μ(1−i∗)−m+βP ∗
βP ∗−μ

. This exists when i∗ < 1−m
μ

(N∗ > 0), i∗ < 1
μ(h+1)

− m
μ

(N∗ < 1, i.e.

P ∗ > 0), P ∗ >
μ
β

(for i∗ < 1) and P ∗ >
μ+m

β
(for i∗ > 0).

The strongest of these conditions are i∗ < 1
μ(h+1)

− m
μ

and P ∗ >
μ+m

β
, which are

the conditions that R
p
i > 1 (the predators’ reproductive number given an infection is

present) and R∗
0 > 1, (the diseases’ reproductive number).

It is not clear whether (N∗,P ∗, i∗) has only one solution. Consequently, this must
be solved. For tidiness, let D = m + μi∗. Starting with D−m

μ
(= i∗), we get:

D − m

μ
= 1 − D

βP − μ
(16)

= 1 − D

βr(h + N)(1 − N) − μ
(17)

= 1 − D

βr(h + hD
1−D

)(1 − hD
1−D

) − μ
(18)

= 1 − D(1 − D)2

βrh(1 − D − hD) − μ(1 − D)2
. (19)

After some further rearrangement, we get:

0 =
(

D − m

μ
− 1

)
βrh(1 − D − hD) + (m + μ)(1 − D)2. (20)

This is clearly quadratic with respect to D, and thus i∗. D can only be biologically
realistic if D ∈ (m,m+μ) (i.e. i∗ ∈ (0,1)). This means there are at most two feasible
coexistent solutions.

The stability is not fully investigated. However, when these steady states exist,
no other steady state is stable. Also, when there are two viable coexistent steady
states, they will be connected to a nearby saddle–node bifurcation, so only one steady
state should be stable. Given this, we expect would that either one of the coexistent
equilibria is stable or there is some stable periodic solution.

A.2.2 FD Model

The coexistent steady state for the FD model is (N∗,P ∗, i∗) where N∗ = h(m+μi∗)
1−(m+μi∗) ,

P ∗ = r(h + N∗)(1 − N∗) and i∗ = 1 − μ+m
β

. This exists when β > μ + m (i∗ > 0),

i∗ < 1−m
μ

(N∗ > 0), i∗ < 1
μ(h+1)

− m
μ

(N∗ < 1, i.e. P ∗ > 0). Like the DD model, the

two strongest conditions are i∗ < 1
μ(h+1)

− m
μ

and β > μ + m. In this case, there is
only one coexistent steady state if it exists.

The stability is not fully investigated. However, when this steady state exists, no
other steady state is stable. Given this, we would expect that either one of the coexis-
tent equilibria is stable or there is some stable periodic solution.
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